

break easily

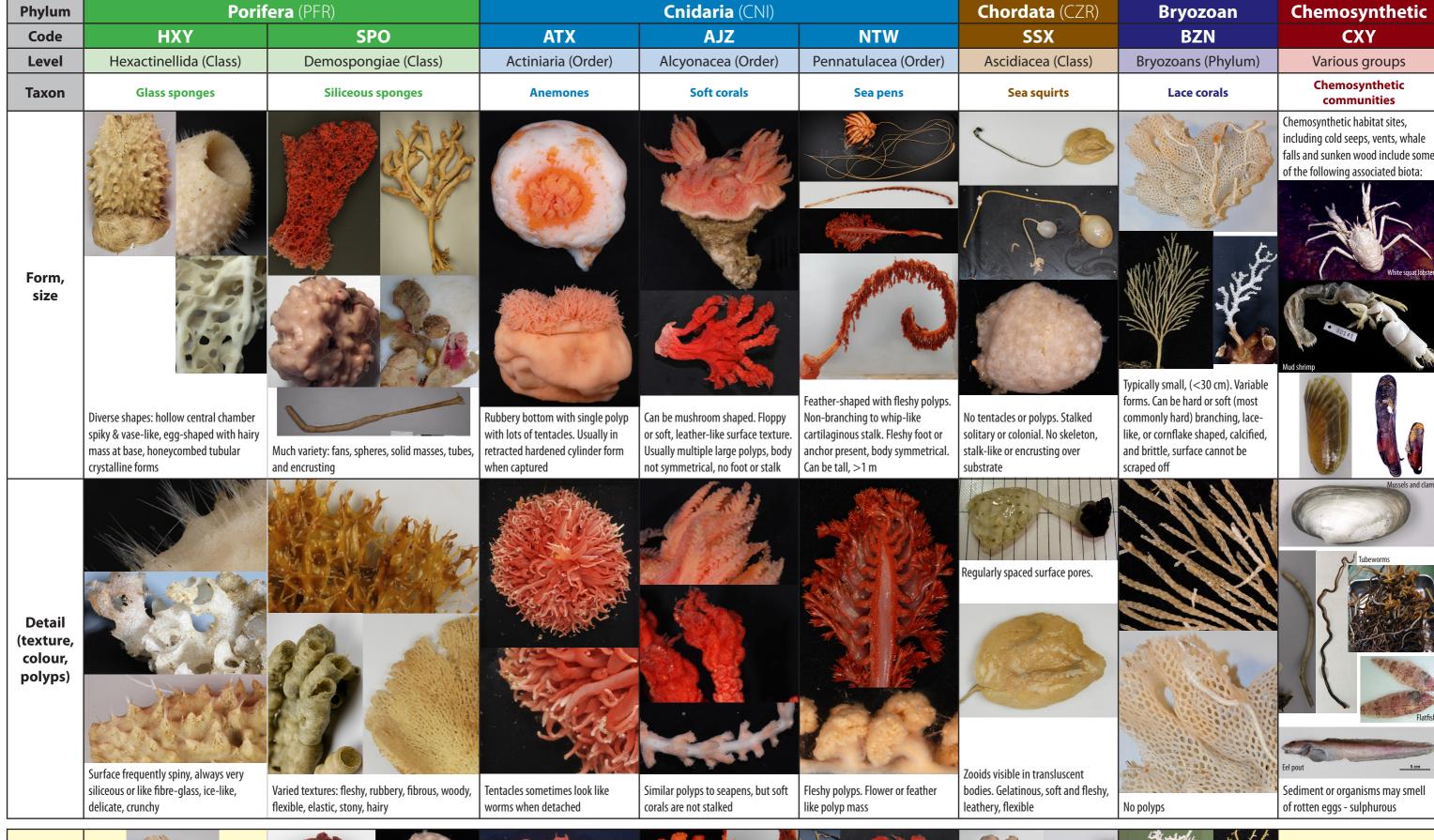
oft corals, that nave soft stems. Stylasterids, but small pieces, but won't Corallidae have nodules

Hydroids if small pieces, but have distinct polyps Pieces of Corallium

Small specimens of Gorgonacea, Antipatharia, or carnivorous sponges

Small, hard bryozoans or pieces of Coralliidae

Pieces of hydrocorals and Corallium can be confused with branching stony corals


Hydroid if small, or small pieces of dead Gorgonacea

Large brooding gorgonian coral polyps; branching soft corals

Bryozoans or scleractinians that are small and of a hard matrix

Some Alcyonaceans, Ascidians, which are not spongy but fleshy and have polyps or siphons, and Bryozoans.

Alcyonaceans, which usually have several polyps

Small pieces of Corallidae or some sea pens

Alcyonaceans or some gorgonians due to large polyps and size

Spherical demosponges or piece of sea pen

Stylasterids if hard, hydroids if soft, carnivorous demosponge

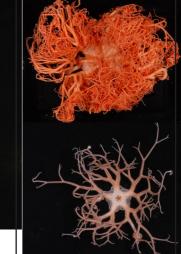
Species belonging to the same taxa — to date only the white squat lobsters have been recorded in the Antarctic region. Because these communities are little known, retain samples to be identified by experts

SIOFA VMF Taxa Classivication Guide 2021

These groups are **not** included


							III III III III III III III III III II		
Phylum	Brachiopoda	Hemichordata (HET)	Annelida (ANH)	Xenophyophora	Arthropoda (AXX)	Echinodermata (ECH)			
Code	BRQ	PYZ	SSY	XEN	BCD	CXX	OOY	ССН	
Level	Brachiopoda (Phylum)	Pterobranchia (Class)	Serpulidae (Family)	Xenophyophora (Phylum)	Bathylasmatidae (Family)	Stalked crinoid (Orders)	Ophiurida (Order)	Cidaroida (Order)	
Taxon	Lamp shells	Acorn worms	Serpulid tube worms	Xenophyophores	Goose and acom barnacles	Stalked crinoids (Sea lilies)	Basket and snake stars	Pencil spine urchins	
		22/2	I				AVORS	11111	

(goose barnacles)



10 cm

Stalked. Small tulip-like body.

Valves enclose the body dorsally and ventrally rather than laterally. Ventral valve typically larger than the dorsal. Attached

the valves

species have a short stalk

emerging from the hinge area of

Form, size

> Tubes conjoined into colonies. Usually gelatinous, often semitransparent

Tube dwelling marine worms. Each tube flange is about 3.5 mm diameter. Forms large clumps, somewhat corallike, typically Subantarctic distribution

A specialised group, is among the largest single-celled protozoans. Colony size can be 10-20 cm in diameter

and non-stalked (acorn barnacles)

Arms usually branched. Crinoids are generally fragile, often only fragments. A long stalk, some bearing whorls of hooklike cirri.

Large disc with 5-6 arms splitting at the disc into many Body length up to 20 cm coiled branches

Regularly spherical, rigid structure, typically 2–10 cm in diameter. Covered with small spines and 10 distinct columns of large pencil-like spines

fluted or spiny surface

Red-orange to brown. Tubes Serpulid worms in hard closely or loosely bound calcareous tubes

The mantle surface of any barnacle bears at least 5 major plates, which are pulled together for protection. Heavily armoured

istinguished from other sea stars by branched or highly coiled arms and lack of ventral groove on underside of arms

Usually shades of beige, burgundy or purple. Spines paler, they can be a substrate for other organisms. Large spines can be cylindrical or flattened

Commonly mistaken for other indicator groups, such as:

Resemble bivalve molluscs but one valve is much larger, and overhangs the smaller valve

tunicates or demosponges

Other worm like forms in sediment tubes

spherical to flat. Many species have a rounded, lumpy form

and irregular netlike surface

structure. Most are fragile but

one group is felt-like & robust.

Found >500 m

Fragments of demosponges sponges (see image), colonial ascidians, bryozoans, or 'inorganic concretions'

Cup corals or clusters of tube worm casings

Fragile, not flexible. Brittle and

segmented

basketstars, or feather stars if stalk not present

Other sea stars with multiple or coiled arms and more common forms with non-branching arms

Urchins that lack the large pencillike spines

SIOFA VME Taxa Classification Guide

Conservation and Management Measure 2019/01 requires vessels to monitor bycatch for the presence of vulnerable marine ecosystem (VME) taxa as defined by the Agreement.

The level of classification required is relatively coarse for most taxa, where phylum, class or order is sufficient. However, some groups may require classification to family or even species. In addition, several groups can be confused at first sight. Therefore, a classification guide is needed to assist in the rapid and efficient classification of VME taxa.

Instructions

This SIOFA VME Taxa Classification Guide provides observers, fishers, and biologists at sea with a taxon-specific, quick, on-deck guide to aid in the classification of macroscopic marine invertebrate bycatch into the required VME groupings. VME taxa are a subset of the total invertebrate taxa encountered as fishery bycatch, and therefore additional processes are still required to collect information on non-VME taxonomic groups. Typically, invertebrate identification is not done at sea because it requires specialised tools. The format of the VME guide is a "compare and contrast table", using photographs and key characteristics to correctly assign VME taxa to the appropriate grouping. It also highlights commonly confused groups. Symbols representing non-VME groups are listed in the top right-hand margin.

The guide is organised into columns, each describing a taxonomic group and colour coded by phylum. Those groups that appear similar have been placed next to each other where possible. The top row for each column is a parent column that identifies the phylum for the vulnerable groups below. The FAO 3-letter taxonomic code for each group is provided at the top of each column and for the parent group. Below the codes are the scientific and common names for each group. The first row contains photographs and brief descriptions of the overall size and shape of specimens for each group. The next row then provides details of the specimen's appearance, such as texture, colour, or polyp characteristics, and also includes close-up images as examples. A final row (with a yellow background) has images and descriptions of specimens representing other phyla. This row shows how these specimens can be commonly mistaken for other taxa and flags details on what to look out for during classification. Text in this row should be read beginning with the phrase in the row heading to aid in clarity.

Photographs of Antarctic specimens have been used where possible to aid in the identification of VME groups. The guide has been linked through colour coding to phyla in the "Guide to common deepsea invertebrates in New Zealand waters" (Tracey et al. 2007), the SPRFMO VME taxa guide (Tracey et al. 2008), and the Field identification guide to Heard Island and McDonald Island (HIMI) benthic invertebrates (Hibberd and Moore 2009). Invertebrate specimens that cannot be identified with confidence need to be identified to the lowest taxonomic level possible, retained on board, and returned frozen as biological specimens for formal identification.

Acknowledgments

CCAMLR, Convention for the Conservation of Antartic Marine Living Resource which permitted SIOFA to adapt its original VME taxa guide.

Developers: S. Parker¹, D. Tracey¹, E. Mackay¹, S. Mills¹, P. Marriott¹, O. Anderson¹, K. Schnabel¹, D. Bowden¹, M. Kelly¹, S. Lockhart²

¹National Institute of Water & Atmospheric Research Ltd (NIWA) Private Bag 14901, Wellington, New Zealand

²U.S. Antarctic Marine Living Resources Program Antarctic Ecosystem Research Division NOAA Southwest Fisheries Science Center La Jolla, CA 92037, USA

Corresponding author: s.parker@niwa.co.nz

Photographs: Protected by copyrights either of National Institute of Water & Atmospheric Research Ltd, Land Information New Zealand, the New Zealand Ministry of Fisheries, the New Zealand Department of Conservation, the US Antarctic Marine Living Resources Program, or Peter Batson www.deepseaphotography.com. Photographs were also contributed by CCAMLR fishery observers.

Advice: We thank international taxonomic experts in specifying useful characters for classification of several groups, including Stephen Cairns, Juan Sanchez, Dennis Gordon, Geoff Read, Shane Ahyong, Stefano Schiaparelli, and Ole Tendal. We also thank the CCAMLR VME workshop and FSA working group for their comments and suggestions to improve the guide.

Funding: This project was funded by the New Zealand Ministry of Fisheries under project ANT2009-01.

This document may be cited as: SIOFA VME Taxa Classification Guide. 4 p. (2021)

References cited

Tracey, D.M.; Anderson, O.F.; Naylor, J.R (Comps.) (2007). A guide to common deepsea invertebrates in New Zealand waters. *New Zealand Aquatic Environment and Biodiversity Report No.* 10. 282 p.

Tracey D.M.; Parker, S.J.; Mackay, E.; Anderson, O.; Ramm, K. (2008). Classification guide for potentially vulnerable invertebrate taxa in the SPRFMO Area. New Zealand Ministry of Fisheries, Wellington, New Zealand.

Hibberd, T.; Moore, K. (2009). Field identification guide to Heard Island and McDonald Island (HIMI) benthic invertebrates: a guide for scientific observers aboard fishing vessels. The Department of Environment, Water, Heritage, and the Arts, Australian Antarctic Division and the Fisheries Research and Development Corporation. 158 p.