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Executive summary 

SIOFA’s project PAE2020-02 involved the development of bioregionalizations of the SIOFA 
area based on VME indicator taxa. Three predictive modelling approaches were implemented 
to produce maps depicting potential bioregions in the area. These three approaches are 
known as “group first, then predict”, “predict first, then group”, and “analyse simultaneously” 
(Ferrier & Guisan, 2006). At the end of project PAE2020-02, preliminary work was shown on 
the development of a bioregionalization based on the “analyse simultaneously” approach. 
We used a point process extension of Regions of Common Profile model (RCPs; Foster et al., 
2013). RCPs simultaneously generate site-based classifications by analysing biological and 
environmental data in a single model. A benefit of this method is because the propagation of 
uncertainty from the observed species data through to the predicted bioregions. Most two-
step approaches (“group first, then predict” & “predict first, then group”) fail to transfer 
uncertain into predictions upon clustering. In this report we show the next iteration of the 
model and interpret the outcomes in relation to the “group first, then predict” and “predict 
first, then group” modelling approaches carried out previously in project PAE2020-02. 
 
The point process extension of RCPs allowed us to generate bioregional predictions in a single 
step based on presence-only records for 134 VME indicator species and 31,535 unique sites. 
Using model-selection we found that the “best” model for these data suggesting seven 
bioregions at depths shallower than 2,500 m across the extent of the area of study. There 
were only three RCP groups with distinct distributions, whereas the remaining four RCPs 
displayed a similar, low pan-oceanic probabilistic distribution. This pan-oceanic distribution 
and low probability of presence might be related to the limited number of samples in Areas 
Beyond National Jurisdiction within the Indian Ocean. The distribution of the seven RCP 
groups appeared to reflect the ocean currents of the Indian Ocean, which was observed as 
latitudinal patterns and distinct spatial predictions in regions with unique environmental 
signatures. Some of the RCPs were also restricted to depth ranges. 
 
A bridge between the approaches “group first, then predict” and “predict first, then group”, 
the RCP bioregions had similarities to the bioregions predicted with both approaches, 
although there was no direct equivalence between predictions. The RCP bioregions are likely 
to provide an approximation of the expected number and distribution of bioregions that occur 
in the Southern Indian Ocean. Yet, the limited number of samples in Areas Beyond National 
Jurisdiction, the uncertainty in the model selection, and the low probabilities predicted for 
half of the RCP groups warrant caution in the interpretation of the model. The intermediate 
step in the “group first, then predict” approach, where the raw data is classified into groups, 
is an advantage over this approach, as it does not necessitate of model selection. Therefore, 
we suggest that conservation efforts in the SIOFA area should represent all the delineated 
bioregions and subregions in the “group first, then predict” approach. 
 
 
 
 
  



Bioregions in the SIOFA area based on VME indicators 
 

 6 

1. Purpose of the report 

This report aims to address Terms of Reference 1 “Building on ongoing VME mapping 
activities being undertaken by SIOFA, to undertake classification of key biological, geological, 
and oceanographic data to provide a spatial framework for classifying the area’s marine 
environment into bioregions and, where possible, smaller spatial entities within bioregions, 
that make sense ecologically and are at a scale useful for regional planning” of project 
PAE2021-01 (“Bioregionalization and Management of Vulnerable Marine Ecosystems 
(VMEs)”). 
 

2. Introduction 

The United Nations require states and regional fisheries management organisations (RFMOs) 
agreements to implement measures to prevent significant adverse impacts on vulnerable 
marine ecosystems (VMEs) (UNGA, 2007). Following UNGA resolutions, the Southern Indian 
Ocean Fisheries Agreement (SIOFA) requires scientific advice informed by maps of where 
VMEs are known to occur, or likely to occur, in the Agreement Area. Biogeographical 
classifications, or bioregionalizations (Woolley et al., 2020), are the building blocks for the 
planning and implementation process of management measures and are highly connected to 
the development of marine protected areas (Rice et al., 2011). This is because biogeographical 
classifications enable the identification of units that should be represented in a network, 
ensuring the protection of biogeographically unique areas and the development of a network 
that considers representativity, connectivity and replication of sites (Rice et al., 2011).  
 
There are many predictive approaches to map bioregions, which can be generally classified 
into three categories (Ferrier & Guisan, 2006). The first one consists in grouping biological 
features into bioregions first, and then spatially predict these bioregions (“group first, then 
predict”). The second one consists in spatially predicting all biological features individually 
first, and then group them with a clustering approach (“predict first, then group”). The last 
one consists in grouping and predicting bioregions in a single modelling approach (“analyse 
simultaneously”). Each method has its set of advantages and shortcomings that make them 
complementary in the information they provide. Ultimately, however, the kind of data 
available will often limit the choice of method (Woolley et al., 2020).  
 
Previous work for SIOFA (project PAE2021-01) developed bioregionalization schemes based 
on the three predictive approaches mentioned above (Ramiro-Sánchez & Leroy, 2022). One 
of the methods was however modified to follow state-of-the-art recommendations. 
Specifically, a “group first, then predict” modelling approach known as Generalized 
Dissimilarity Models was initially planned; however, it has been recently criticized for their 
inadequacy in identifying relevant predictors of turnover in species composition between 
regions (Woolley et al., 2017). Consequently, the methods of the consultancy (Generalized 
Dissimilarity Models or other appropriate techniques; Deliverable 3.3) were modified to 
include Regions of Common Profile (Foster et al., 2013), which corresponds to the approach 
“analyse simultaneously”. Attempting to develop bioregions based on RCPs is important for 
three reasons. First, they offer repeatability because the mathematical model defines 
formally bioregions and the relationship with the environment (Hill et al., 2020; Warton et al., 
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2015). Second, currently, they are the only approach able to quantify uncertainty given the 
probabilistic nature of the models (i.e., a site has some chance of belonging to more than one 
bioregion), calculating 95% confidence intervals of the predictions that allow to have a more 
conservative or a more optimistic scenario of the predictions. These appropriate measures of 
uncertainty are essential for spatial management applications to understand the risks 
associated with applying or not a certain measure in a location (Hill et al., 2020). Third, the 
simultaneous grouping and prediction for taxa has the potential of integrating dispersal 
limitation in the prediction. Thus, in this report, we provide the next iteration of the 
preliminary results from RCP model exploration and compare it with the other two 
bioregionalization approaches. 
 
 

3. Bioregionalization of the Southern Indian Ocean 

3.1 An extension of the Regions of Common Profile (RCPs; Foster et al., 2013) 
 
As a third approach to generate biologically data-driven bioregions, we used a Poisson Point 
process extension of the Regions of Common Profile model (RCPs; Foster et al., 2013) . The 
Regions of Common Profile (RCPs; Foster et al., 2013) approach is a multivariate adaptation 
of a finite mixture-of-experts model (Jacobs et al., 1991) that jointly considers multi-species 
and environmental data. The RCP approach allows mapping of bioregions within which 
species share the same probability of being sampled at any site within that bioregion and 
predict these groups at unsampled sites through the relationship with the environmental data 
in a single analysis (Foster et al., 2013, 2017). This is advantageous compared to two-step 
classifications, since they do not propagate uncertainty from statistical models to the 
grouping step (clustering) (Warton et al., 2015). Moreover, the RCP approach allows to 
incorporate sampling artefacts in the analysis that otherwise may have the effect of conflating 
patterns in sampling artefacts with ecological patterns, leading to incorrect inferences (Foster 
et al., 2017).  
 
The RCP framework described above considers scientifically collected data for which there is 
information on where species are present and where species were not observed (absences, 
e.g., Warton et al., 2013). However, at large scales like the one considered here, data are a 
compilation of records from scientific surveys and ad-hoc collections, the latter being typically 
kept in natural history museum collections and in on-line repositories. These ad-hoc data are 
missing in information of where species were not observed (absence) and, as such, it is not 
possible to estimate the probability of occupancy for these presence-only data (Guillera-
Arroita et al., 2015). Instead, these presence-only data require special consideration, which 
has not been formulated into Foster et al.'s (2013) approach (Woolley et al., 2020).  
 
A promising solution is to extend Foster et al.'s (2013) method to presence-only data cases by 
implementing a Poisson point process and accounting for sampling imbalance in the models 
(Woolley et al., 2020). Here the RCP model was extended to be an inhomogeneous Poisson 
point process (Cressie, 1993; Warton & Shepherd, 2010), where species occurrences (i.e., 
presence locations) are assumed to follow a Poisson distribution. The resultant model 
generates a probability of sighting a species within a bioregion (a density, based on the 
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presence points) rather than a probability of occurrence of a species within a bioregion. To 
account for the source of variation in the data collection, we estimated sampling bias for each 
grid cell using the target-group approach, as it has been shown to perform the best at 
emulating sampling effort (Barber et al., 2022). Specifically, we used all records of VMEs 
indicators in our dataset (at any taxonomic level) and used a 2D kernel density estimation to 
convert single points into a continuous probability surface (see Barber et al. (2022) for 
methods and code). By including it in the model, it is possible to estimate the distribution of 
bioregions with the confounding of sampling bias much reduced (Foster et al., 2017). Further 
details of RCP models can be found in Foster et al. (2013) and Foster et al. (2017). 
 
 
3.2 Data analysis  
 
We selected environmental variables from the World Ocean Atlas Data (WOA 2018) available 
at 1° spatial resolution: apparent oxygen utilization, percentage of oxygen, dissolved oxygen 
(µmol/kg), density, nitrate, phosphate, silicate, salinity (unitless), temperature (°C). We 
included mean net primary production (g C m−2year−1, NPP) generated from a vertically 
generalized production model (VGPM) across the years 2003 to 2010 
(http://www.science.oregonstate.edu/ocean.productivity/). NPP is a function of satellite-
derived chlorophyll (SeaWiFS and Modis). Depth was included from the GEBCO bathymetric 
model (GEBCO, 2008) originally available at a spatial resolution of 1 minute. We also included 
latitude and longitude as variables. All environmental variables were reprojected to Albers 
equal area projection and to same spatial resolution of the bathymetric model. 
 
We checked for multicollinearity in the environmental variables using Spearman rank 
correlation. Strongly correlated variables (|ρ|>0.7) were removed from analyses to avoid 
issues with co-linearity of model coefficients (Dormann et al., 2013). For tied variables, we 
selected the variable the most biologically meaningful for VME indicator taxa. Our final set of 
variables was composed of seven variables: depth, dissolved oxygen, temperature, and 
salinity at seafloor, mean net primary production, and latitude and longitude. Specifically, we 
fitted a model with linear and quadratic polynomials of the environmental variables, with 
latitude and longitude as an interaction term, for 134 species that had more than 30 
occurrences in the dataset. We restricted the model to depths shallower than 2,500 m 
because of the large number of grid cells for prediction. 
 
When fitting an RCP model, the number of groups (i.e., RCPs) needs to be specified. The 
optimal number of RCPs is rarely known a priori but can be inferred by fitting models with 
varying numbers of groups and using the Bayesian Information Criteria (BIC) to choose the 
“best” number of groups (Foster et al., 2013; Hill et al., 2017). Here we ran models with 2 to 
12 RCPs with a meaningful number of environmental variables. Specifically, we described the 
probability of sighting a species within a bioregion as a function of linear and quadratic 
polynomials of the explanatory variables for each of the 2-12 RCPs, with 30 random starts. 
Random starts are necessary to avoid getting stuck in a local likelihood maximum (Foster et 
al., 2013).  
 
Model uncertainty was estimated via 20 Bayesian bootstrap replications, providing 95% 
confidence intervals (CI). We spatially predicted the preliminary optimal RCPs with the 
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selected number of groups. Finally, we calculated the species composition of each RCP 
multiplying the probability that a species occurs in a RCP by the probability of a site belonging 
to that RCP, and summed across all sites (Σ!"#$𝛼% ×	𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦%). 
 
We used the R “ecomix” package (https://github.com/skiptoniam) and “RCPmod” R package 
(https://github.com/cran/RCPmod) to fit and predict the RCP models. All analyses were 
conducted in the R computing environment v4.1.2 (R Development Core Team, 2021) and 
models run in the High-Performance Computing and Algorithmic Platform cluster of the 
French Natural History Museum (Plateforme de Calcul Intensif et Algorithmique PCIA, 
Muséum National d’Histoire Naturelle, Centre national de la recherche scientifique, UAR 2700 
2AD, CP 26, 57 rue Cuvier, F-75231 Paris Cedex 05, France). 
 

4. Bioregionalization results 

4.1 Model selection 
 
Out of 360 models fitted (30 runs per each number of RCPs), 326 were successfully modelled. 
Models fitted with 8 to 12 number of RCPs were considered misfits as the BIC spanned a large 
range of negative and positive values (Figure 1A), and the log-likelihoods were greater than 
zero (Figure 1B).  
 
The lowest BIC (excluding RCPs ≥ 8) suggested 4 or 7 RCPs as the optimal number of groups 
in the data (Figure 1A). Inspection of the RCP model with 4 RCPs revealed a model misfit as 
there was only one RCP group predicted and the remaining RCPs were zero groups. This was 
likely a result of a spike in the log-likelihood, which can be observed in Figure 1B as a solitary 
negative value. Although model selection in mixture-of-experts models (i.e., RCPs) is 
performed using BIC values, BIC is not entirely reliable because it sometimes can suggest one 
RCP for a single site (i.e., grid cell) (McLachlan & Peel, 2000), as it was the case here. Thus, 
several models need to be inspected to understand whether they are a misfit. Consequently, 
we focused on the next lowest BIC, which corresponded to 7 RCPs. Inspection of fitted models 
with 7 RCPs revealed BIC values similar to BIC values from some models fitted with 6 and 8 
RCPs. As a result, we selected ten models for further inspection (one model with 6 RCPs, four 
models with 7 RCPs and five models with 8 RCPs) and performed 20 Bayesian bootstrap 
samples to calculate uncertainty in the predictions resulting from the models. Next, we 
spatially predicted the ten models. Visual evaluation of the ten models indicated one model 
fitted with 7 RCPs as a potential good fit.  
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Figure 1. Selection of “best” number of RCPs based on (A) the Bayesian Information Criteria (BIC) and 
(B) maximum log likelihood. We truncated the y-axis in (A) to display better the BIC values and the 
characteristic exponential decay curve they should follow. We provide as an inset the full spectrum of 
models, where RCPs ³ 10 are misfits given their large spanning positive and negative BIC values. 
Similarly, models for RCPs ³ 10 exhibit log-likelihoods greater than zero also indicating a misfit of the 
models (B).  
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4.2 Model predictions 
 
The final model comprised 7 RCP groups. The predicted spatial distribution of the RCPs across 
the Indian Ocean is shown in Figure 2. The probabilistic model output has been summarized 
by assigning each cell a hard class based on its most likely RCP (Figure 2A). The probability of 
the hard classification for each cell is also shown (Figure 2B). Maps of the average probability 
of occurrence (and 95% CI's) of each RCP are shown separately in Appendix A (Figure A1-
Figure A7). The species composition for each RCP can also be found in Appendix A, Table A1. 
 
RCP1 was predicted across all latitudes and longitudes of the study area with the lowest 
probabilities (< 0.4) but absent from the shallowest depths at Walter’s Shoal, the 
Mozambique Ridge, Del Cano and Crozet Plateau (Figure A1). Net primary productivity 
appeared to be a key driver of RCP1’s distribution (Figure 3). 
 
RCP2 was distributed latitudes south of ~15°S, specifically south of Madagascar, Walters 
Shoal, the shallowest parts of the Southwest Indian Ridge and Del Cano and Crozet Plateau, 
Mozambique Ridge, Broken Ridge and east of Broken Ridge with the junction of Southeast 
Indian Ridge (Figure A2). RCP2 spanned all depths, although there was a distinct decrease in 
probability at depths > 2,000m (Figure 3). In addition, this group was characterised by high 
levels of dissolved oxygen, lower temperatures, and low net primary productivity (Figure 3).  
 
RCP3 had the same pan-oceanic weak predicted probability of presence as RCP1, that is, it 
was excluded from the shallowest areas within SIOFA, except at Saya de Malha (Figure A3). 
This RCP revealed highest probability of detection at shallower areas (< 500 m) and great 
variability in its response to the remaining environmental covariates (Figure 3). 
 
RCP4 was predicted across all the Indian Ocean very weakly (Figure A4) and across several 
depths (Figure 3). The stronger prediction was on Ninety-east Ridge and Broken Ridge. 
Although not within SIOFA’s Convention Area, the RCP was not predicted along the east coast 
of Africa (Figure A4). 
 
RCP5 followed the same distribution and similar response to the environment as RCP4 (Figure 
3), but it was also predicted along eastern Africa (Figure A5). The probability of RCP 
membership was low (< 0.2, Figure A5). 
 
RCP6 had a northern distribution, with high probability of detection at latitudes north of the 
Equator, particularly in the Carlsberg Ridge, Chagos-Laccadive Ridge, and northern Mascarene 
plateau (Seychelles) within SIOFA (Figure A6). The response to the environmental covariates 
appears to resemble the geographical location of its distribution (Figure 3). 
 
Finally, RCP7 had an anti-meridian prediction, with strong probability of presence along the 
African coast, reaching the Agulhas Plateau, northwest of Madagascar, Saya de Malha and 
northwest Australia (Figure A7). The strongest predicted latitudes were approximately from 
5°N to 20°S. The distribution of RCP7 seemed to be driven mainly by dissolved oxygen, salinity, 
and net primary productivity (Figure 3). 
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Figure 2. (A) Hard classed predictions of the spatial locations of each of the seven RCP groups and (B) 
the probability of occurrence associated with the hard classification. Each cell was assigned its most 
probable RCP group (a) and the probability of the group with the highest probability of presence at 
each site . White areas are not included in the model (depths > 2,500 m).  
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Figure 3. Response of each RCP to depth, and yearly mean of bottom dissolved oxygen, bottom 
temperature, bottom salinity, and surface net primary production. Plots were generated by predicting 
RCP membership for each trawl site based only on its environmental covariates.  
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5. Discussion 

SIOFA’s project PAE2020-02 investigated three predictive bioregionalization modelling 
approaches to classify biological, environmental, and oceanographic data into bioregions 
(Ramiro-Sánchez & Leroy, 2022). Results from the “analyse simultaneously” approach were 
preliminary at the time due to a late incorporation of the methodology. The present report 
completes the work and discusses the results in the context of the three predictive 
bioregionalization schemes (Ferrier & Guisan, 2006): “group first, then predict”, “predict first, 
then group” and “analyse simultaneously”. For the “analyse simultaneously” approach, we 
implemented an extension of the Regions of Common Profile (RCPs; Foster et al., 2013), which 
analyses and groups simultaneously biological and environmental information for presence-
only data. This method allowed to group and predict, in a single step, bioregions based on 
134 VME indicator species, suggesting seven groups at depths shallower than 2,500 m across 
the extent of the area of study. The hard-class classification revealed both a bathymetric and 
latitudinal distribution of the seven RCP groups. This classification has similarities with the 
bioregions predicted with the “group first, then predict” and the “predict first, then group” 
approach, but presents clear differences. Due to the uncertainties surrounding the model 
selection step, the present RCP classification remains to be validated. Nonetheless, it 
constitutes an important step towards the development of model-based bioregions using 
state-of-the-art methodologies for broad-scale presence-only data. The collection of new 
data in Areas Beyond National Jurisdiction will enable its refinement. We therefore 
recommend that conservation efforts should represent all the delineated bioregions and 
subregions detected in the “group first, then predict” approach. 
 
Bioregions based on an extension of the “Regions of Common Profile” 
 
There were only three RCP groups with distinct distributions (Figure A2, Figure A6 and Figure 
A7), whereas the remaining four RCPs displayed a similar pan-oceanic probabilistic 
distribution (Figure A1, Figure A3 – Figure A5). The low probability of presence for these four 
RCPs was observed in the homogeneous poor response to the environmental covariates used 
for their prediction (Figure 3). Unlike the previous preliminary model iteration (PAE2020-02; 
Ramiro-Sánchez & Leroy, 2022), where site specificities were not considered in the model 
(i.e., latitude and longitude were not predictors), the addition of the interaction term might 
have intensified the uncertainty in the spatial predictions. In addition, data shortfalls might 
have contributed to the low probabilities, wherein those well characterized sites likely formed 
the basis of the distinctly bounded RCPs (RCP2, RCP6 and RCP7). In fact, the pan-oceanic 
distribution and low probability of presence of RCP3, RCP4 and RCP5 might be related to the 
limited number of samples in Areas Beyond National Jurisdiction for our study area. 
 
The RCP approach uses a single model to group and predict sites based on the species 
observed at a site and should be preferred upon methods that do this using two separate 
models, as per the “group first, then predict” and “predict first, then group” methods. The 
bioregions based on RCPs shared similarities with outputs from both the “group first, then 
predict” bioregions (Figure 4) and the “predict first, then group” bioregions (Figure 5), 
although there was no direct equivalence between predictions. For instance, on one hand, 
RCP2 and RCP3 resembled subregion 1.2, and RCP6 resembled subregion 1.1 of “group first, 
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then predict”, whereas RCP1-RCP3 also resembled cluster 2, cluster 3 and cluster 5 of the 
“predict first, then group” approach.  
 
The distribution of the seven RCP groups appeared to reflect the ocean currents of the Indian 
Ocean, which was observed as latitudinal patterns and distinct spatial predictions in regions 
with unique environmental signatures. This explains the weak environmental response curves 
(Figure 3), as the properties of currents and water masses are displayed but not their unique 
geographic location resulting from the influence of the seafloor topography and other factors, 
such as the presence of the Indian monsoon and the influx of the Antarctic Circumpolar 
Current from the south. Depending on taxa and depth of topographic features, these may act 
as potential barriers or as stepping-stones to dispersal by restricting the flow of currents 
and/or facilitating habitat for dispersing larvae across vast distances (McClain & Hardy, 2010). 
The signature of currents was evident for RCP6, RCP7 and RCP1 (Figure 2). RCP6 followed the 
westward flow of the South Equatorial Current and the eastward flow of the East Madagascar 
Current (Talley et al., 2011). RCP7 appeared to follow the North East Madagascar Current that 
further splits into a portion that flows into the Mozambique Channel, which eventually joins 
the Agulhas Current, and another portion that continues north joining the East African Coastal 
Current (Talley et al., 2011). Finally, RCP1, also appeared to follow the South Equatorial 
Current path, but at different depths. 
 
The RCPs not only occupied latitudinal bands but were restricted to depth ranges, although 
the limitations of using global bathymetric models were evident (panel “Depth”, Figure 3). 
The role of bathymetry in the distribution of benthic marine species is well known, where 
biodiversity at local and regional scales is often associated with depth bounds (Carney, 2005). 
Nevertheless, the depth at which species turnover occurs varies among taxa and latitude (e.g., 
O’Hara et al., 2011; Williams et al., 2001; Woolley et al., 2013). In our study, RCP2 and RCP3 
showed the greatest patterns in depth bounds, whereas the patterns of the remaining RCPs 
reflected less nuanced differences, with a combination of other factors driving their 
distributional patterns.  
 
The previous iteration of the model suggested seven RCPs for depths shallower than 3,500 m 
(Ramiro-Sánchez & Leroy, 2022). The first-iteration model was calibrated with the same 
environmental predictors as the present iteration, although the environmental data was 
sourced from the Bio-Oracle global oceanographic dataset (Assis et al., 2018; Tyberghein et 
al., 2012). Besides the environmental data sources, the main difference between the previous 
and the present iteration stems from the inclusion in the latter of the interaction term 
between latitude and longitude. The previous iteration revealed bimodal patterns within the 
same RCP group. For instance, there was one RCP predicted in the northern Indian Ocean and 
in the Southern Ocean. This prediction probably resulted from certain environmental 
variables presenting similar characteristics such as a minimum in dissolved oxygen at both 
latitudinal limits of the Indian Ocean. Thus, by including latitude and longitude, we attempted 
to ensure that specificities of sites were taken into account in the model.  
 
Mixture-of-experts models are difficult to implement and are computationally intensive. 
Furthermore, as illustrated in the results, model selection is not straightforward. Whilst 
model selection can be informed using the BIC values, in mixture-of-experts different BIC 
values might be obtained for the same fitted model (Foster et al., 2017). Ideally, the model 
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run with the lowest BIC would be chosen, but because of the spikes in the log-likelihood some 
of these values are not reliable. As a result, a range of models need to be investigated. In our 
case, we explored ten models and chose one optimal model out of the investigated models 
(with a different number of RCP groups). However, for the same number of RCP groups, 
another model could have been selected (based on the BIC) that would have displayed a 
slightly different spatial configuration. Thus, we conclude that the present model remains 
tentative for the data used in the analysis.  
 
 
Bioregions of the Southern Indian Ocean based on VME indicator taxa: where do we stand? 
 
Project PAE2020-02 aimed to develop three predictive bioregionalization approaches to 
generate bioregions based on VME indicator taxa for the SIOFA area. Despite the scarcity of 
data, we managed to identify, predict, and map several biogeographical regions, although 
with varying levels of confidence across the three techniques. The ultimate purpose of these 
different classifications will be to support management decisions towards the protection of 
benthic areas. As we have discussed extensively (see Ramiro-Sánchez & Leroy, 2022 and this 
report), the results differ between the different approaches, and especially between 
bioregions of the “group first, then predict” approach and the bioregions of the “predict first, 
then group” approach, whereas the “analyse simultaneously” bioregions are a mixture of the 
two other classifications. 
 
The “group first, then predict” approach suggested several bioregions and subregions whose 
distribution could be explained by depth and water masses in the Indian Ocean (Ramiro-
Sánchez & Leroy, 2022). Because these bioregions were based on the known patterns of 
species co-occurrence in the area, they accounted for the known limits of species dispersal. 
The resulting bioregions can be interpreted as known bioregions to occur in the area based 
on observed samples and, as such, they provide an approximation of the expected number of 
bioregions to occur in the Southern Indian Ocean. In contrast, the “predict first, then group” 
approach does not account for actual distribution patterns of VME indicator taxa resulting 
from dispersal limitations and biotic interactions. Rather, it provides a classification of the 
environment into distinct groups at a fine resolution. Thus, this second set of methods can be 
interpreted as an illustration of the diversity of habitats for VME taxa, based on the available 
environmental data in the study area. In that sense, it is complementary to the “group first, 
then predict” approach. Finally, the bioregions based on RCPs, with similarities to both 
approaches, integrate species’ environmental tolerance and dispersal limitation in the 
prediction. These bioregions are likely to also provide an approximation of the expected 
number and distribution of the bioregions to occur in the Southern Indian Ocean. Yet, as with 
the other two approaches, the limited number of samples in Areas Beyond National 
Jurisdiction, the uncertainty in the model selection, and the low probabilities predicted for 
half of the RCP groups also warrant caution in the interpretation of the model with the current 
data.  
 
In summary, the bioregionalization maps suggest that the SIOFA area has a great diversity of 
bioregions, which is insightful for the ultimate objective of the identification of key areas for 
conservation. The three methodologies have offered complementary insights into the 
distribution of VME taxa in the Southern Indian Ocean. With the present data, bioregions 
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detected with both the “group first, then predict” and “analyse simultaneously” approaches 
appear to reflect actual patterns of geographical distinction in the distribution of VME 
indicator taxa. Although both methods warrant caution in their interpretation, we would 
suggest that conservation efforts in the SIOFA area should represent all the delineated 
bioregions and subregions in the “group first, then predict” approach, based on the available 
data. Although it is a two-step approach, the grouping step does not necessitate of model 
selection, reducing uncertainty to some extent. Nonetheless, there were two main limits to 
these results. First, the resolution at which we delineated bioregions and predicted them 
spatially is coarse (1° latitude-longitude). In this respect, the RCP classification offers more 
nuance in the identification of depth zones in certain places, such for RCP1 and RCP7 in the 
northwest of Australia (Figure 2). Second, there were large areas of uncertainty in our 
predictions, i.e., areas where none of our models were able to predict the suitability for any 
of the bioregions. Here too, the consideration of the RCP classification may inform future 
steps on how best to capitalise on the results and circumvent these limits to inform 
conservation plans for SIOFA VME taxa. Finally, we insist on the very limited availability of 
data in the SIOFA area, which implies that interpretation must be exerted with caution, and 
we urge for the necessity of acquiring more data on deep-sea benthic taxa in the SIOFA area. 
As new data become available, bioregionalization models will be updated and provide more 
confidence in their interpretation. 
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Figure 4 . Hard classed predictions of the spatial locations of the first-level (top panel) and nested 
second-level (bottom panel) bioregions predicted using the “group first, then predict” 
bioregionalization approach. See Ramiro-Sanchez and Leroy (2022) for methods.  
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Figure 5 . Bioregions at species (top panel) and genus (bottom panel) taxonomic level predicted using 
the “predict first, then group” bioregionalization approach. See Ramiro-Sanchez and Leroy (2022) for 
methods. 
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6. Recommendations  

Following on the work carried out we recommend the Scientific Committee to: 
• Note that the work carried out for this Terms or Reference goes in conjunction with 

a previous consultancy (PAE2020-02). 
• Consider the bioregionalization map produced by the “Group first, then predict” 

modelling approach, as model selection for the RCPs remains tentative. 
• Note that, despite the model’s overprediction, the bioregionalization map produced 

by the “Predict first, then group” approach will be more complete than any 
environmental classification. 
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Figure A1. Probability distribution of RCP1 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A2. Probability distribution of RCP2 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A3. Probability distribution of RCP3 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A4. Probability distribution of RCP4 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A5. Probability distribution of RCP5 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A6. Probability distribution of RCP6 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Figure A7. Probability distribution of RCP7 (Point prediction). Lower and upper confidence intervals (CI) 
(95%) are also provided. 
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Executive summary 

International obligations require the implementation of conservation measures for the 
management of deep-sea bottom fisheries, due to the potential impacts they may have on 
seafloor biodiversity, especially on vulnerable marine ecosystems. Prioritising areas can help 
in the conservation of biodiversity from pressures imposed by human activities. Systematic 
conservation planning (SCP) has been promoted as an approach to ensure the long-term 
persistence of biodiversity using an explicit, objective, transparent, repeatable, and efficient 
methodology Thus, SCP, also referred to as the process of making informed decisions about 
the identification and preservation of areas of conservation value, can lead future work 
towards the prioritisation of areas in SIOFA. 
 
Marxan is the most widely used SCP software to identify conservation priorities and help 
inform the creation of marine and terrestrial protected area systems. Marxan solves a 
“minimum-set strategy” optimisation problem, wherein the objective of the “minimum-set 
strategy” is to achieve a certain amount of every biodiversity feature for the smallest possible 
cost. 
 
Here, we investigated the use of Marxan as a decision-support tool in the identification of 
biodiversity areas in SIOFA whilst minimising impacts to existing fisheries. We investigated 
the inclusion of three conservation features for protection: Ecologically or Biologically 
Significant Areas (EBSAs), bioregions based on VME indicator taxa, and geomorphic seafloor 
features. We set a low (5%), medium (10%), and high (15%) ecological conservation target for 
each feature and included fishing effort as tonnes of catch as a cost layer. 
 
Following calibration of Marxan parameters, including the analysis of an appropriate level of 
reserve compactness, the three ecological target scenarios achieved approximately 4%, 7% 
and 10% protection of the overall area, respectively, without impacting the fishing footprint. 
These results should be interpreted relative to the selected conservation features for 
inclusion and the level of compactness of the reserve. 
 
The investigation pointed to several aspects that SIOFA will need to take into consideration if 
a formal SCP is carried out for the area. First, convene over what conservation features to 
include and what ecological conservation targets to set. Second, understanding that there is 
no current approach to integrate certain information into the spatial analysis. Third, convene 
over the spatial resolution of the planning exercise. 
 
This investigation intended to highlight which details could be retained or dropped in future 
work carried out by SIOFA. These Marxan outputs could be treated as a starting point for 
discussions about what to include in, but also what a draft network could look like. It is 
important to remember that Marxan is a decision-support tool in spatial decision-making 
process. That means that Marxan outputs should not be interpreted as final products but to 
guide managers towards areas that are important to protect. Decisions made about where to 
designate areas will need to factor in all possible available information that is not integrated 
into a spatial layer, such as scientific expertise and traditional ecological knowledge about the 
environment in question, practical and political constraints, and human conflicts. 
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1. Purpose of the report 

This report aims to address the Terms of Reference 2 “Investigate and advise on the 
identification of representative protected areas within the SIOFA management area, based on 
bioregionalization work” of project PAE2021-01. 
 
The analyses presented in this report aimed to develop solutions that help to identify priority 
areas for conservation while minimizing the economic impacts of conservation zones on the 
fisheries sector.  

2. Introduction 

International obligations require the implementation of conservation measures for the 
management of deep-sea bottom fisheries, due to the potential impacts they may have on 
seafloor biodiversity, especially on vulnerable marine ecosystems (UNGA, 2007). In this 
regard, SIOFA has initiated management efforts to protect VMEs by identifying a list of VME 
indicator taxa for Indian Ocean waters (CMM 2018/01) and has designated five interim 
Benthic Protected Areas (BPAs) where bottom-fishing trawling is not permitted (CMM 
2019/01). Although these areas contain vulnerable habitats, the importance of selecting 
these areas has not yet been studied. In addition, SIOFA has mandated to map the potential 
biogeographical regions of VME indicator taxa using predictive modelling. Such work 
produced three bioregionalization schemes based on different algorithms (Ramiro-Sánchez & 
Leroy, 2022), which represents significant progress for the Indian Ocean, one of the lesser 
explored world’s oceans.  
 
In continuation of its advancements towards compliance with international obligations for 
the protection of vulnerable habitats, SIOFA wishes now to progress the work by investigating 
potential networks of reserves in their Convention Area based on the bioregionalization work. 
Despite the uncertainties of modelling, these models can help explore potential networks and 
prioritise areas for protection, together with other layers of information (e.g., bona fide 
records of VMEs), and SIOFA members’ expert knowledge of the area.  
 
Prioritising areas can help meet conservation targets set to protect biodiversity, including 
ecosystems, biological assemblages, species, and populations, from pressures imposed by 
human activities (Margules & Pressey, 2000). If different approaches can be used to prioritize 
areas for conservation, systematic conservation planning (SCP) has been promoted as an 
approach to ensure the long-term persistence of biodiversity using an explicit, objective, 
transparent, repeatable, and efficient methodology (Pressey et al., 1993). Thus, SCP, also 
referred to as the process of making informed decisions about the identification and 
preservation of areas of conservation value (Gaston et al., 2002; Moilanen et al., 2009), can 
lead future work towards the prioritisation of areas in SIOFA. 
 
SCP involves several stages (Kukkala & Moilanen, 2013; Margules et al., 2002; Margules & 
Pressey, 2000). First, it requires making choices about the features to protect (e.g., species, 
habitats). Second, upon these features, explicit goals must be set that translate into 
operational and quantitative targets (e.g., X% of a given feature should be protected). Third, 
it identifies actions for achieving those goals. Forth, it considers existing actions that 
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complement new ones in achieving those goals (e.g., existing protected areas). Fifth, it applies 
explicit criteria to meet goals in the context of operational limitations (e.g., budget). Finally, 
it implements actions for maintaining the conditions within reserves that are required to 
foster the persistence of key natural features, together with monitoring of those features and 
adaptive management as required. 
 
In SCP, the value of conservation features gets quantified within each spatial unit (“planning 
units” – PUs) that subdivide the study area. Those PUs can be arbitrary (e.g., a regular grid) or 
based on existing boundaries (e.g., administrative, natural watersheds). The value of 
conservation features can be associated to PUs in different ways, such as estimating the 
occupancy (presence or absence) of a population or species, an area of a species’ habitat, an 
abundance, or a combination of measures that integrate occupancy and habitat condition. 
The conservation value of the PU must be quantified together with the cost of implementing 
an action. This is achieved by explicitly setting targets to achieve conservation goals. These 
targets are often subjective, set through expert opinion (e.g., Levin et al., 2013), community 
consensus (e.g., Game et al., 2011), or are informed by legislation or policy (e.g., Maina et al., 
2020). 
 
Resources for managing or protecting all valuable PUs are usually limited. As a result, there is 
a need for an approach to select a subset of PUs for conservation. This process can be 
translated into a mathematical optimization problem where the goal is to achieve all targets 
for the least cost (Beyer et al., 2016; Kukkala & Moilanen, 2013). In other words, management 
plans must be efficient so that maximising resources allows surplus turn over to be allocated 
to other problems. Otherwise, inefficient management plans may be too large and expensive 
to implement and less likely to succeed (Possingham et al., 2006). 
 

Marxan as a decision-support tool 
 
Marxan is the most widely used SCP software, allowing to solve the optimisation problem and 
helping to inform the creation of marine and terrestrial protected area systems (Ball et al., 
2009). Marxan’s optimization algorithm uses the “minimum-set strategy” to identify 
conservation priorities. The objective of the “minimum-set strategy” is to achieve a certain 
amount of every biodiversity feature for the smallest possible cost. The objective function is 
the mathematical formulation of the minimum-set problem. In protected area design, the 
problem we are trying to solve is to identify the protected area system that achieves our 
targets and spatial requirements for the least cost. Thus, a protected area configuration is 
given an objective function score to measure how well it performs and, in comparing 
alternative solutions, those with lower scores are better. Therefore, the objective function is 
a score that we want to minimize and is calculated as follows:  
 
𝐶𝑜𝑠𝑡 = 	'𝐶𝑜𝑠𝑡

!"

+ 𝐵𝐿𝑀	 ×	'𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦	𝐿𝑒𝑛𝑔𝑡ℎ	
!"

+	 ' 𝑆𝑃𝐹	𝑓𝑜𝑟	𝑚𝑖𝑠𝑠𝑖𝑛𝑔	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠	 × 	𝑃𝑒𝑛𝑎𝑙𝑡𝑦
#$%&'($)

 

 
Where the cost of creating a network of protected areas is a function of the individual costs 
of PU included in the network, but also a function of other factors (i.e., Boundary length and 
SPF -Species penalty factor). A cost is assigned to each PU prior to planning, reflecting a virtual 
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cost of including this specific PU in the network (e.g., some PU could have more economic 
activities than others). Commonly, these are socio-economic costs, such as fishing effort or 
an index of cost. The total cost of a solution (a proposed network) is the sum of costs for all 
PU selected to form a protected area network. Boundary length of the protected area system 
refers to the spatial configuration of the reserve network (i.e., a single large system or several 
small systems). The reserve network boundary length is measured as the sum of the planning 
units that share a boundary with planning units outside the reserve network. Thus, 
fragmented reserve networks will have a large boundary length. A fragmented network will 
likely be difficult and costly to manage, as well as with increased edge effects and reduced 
connectivity. The objective function deals with this by using the boundary length modifier 
(BLM), which can be used to increase the importance of having a more compact reserve 
network. The BLM is user-defined and allows for control of the level of clumping in the 
solution. The larger the value of BLM, the more the system will be clumped and the higher 
the cost will be. For each alternative solution, Marxan calculates whether the target for each 
conservation feature is met or not. If a target is not met, then a user-defined penalty cost 
called the species penalty factor (SPF) can be applied. Making the SPF user-defined allows 
different weightings to be given to different feature targets. The higher the SPF, the higher 
the penalty when a conservation feature target is not met. Penalty refers to the penalty 
incurred for every feature that fails to meet its target. An appropriately high SPF will result in 
more costly protected areas with more targets met. 
 
Marxan produces a number of solutions that each presents a proposed network of protected 
areas that could meet the targets set by the user. The two most important outputs from 
Marxan for any given scenario are the “best solution” and the “sum solution”, the latter also 
referred to as “selection frequency”. The “best solution” is the solution with the lowest overall 
cost (score). Marxan’s objective function states that this best or most efficient solution 
corresponds to selected sites at the lowest total cost. The “sum solution” or “selection 
frequency” reports on how often each PU is selected in a solution. For instance, the Marxan 
algorithm is run 100 times, the “selection frequency” reports on how many times each PU is 
selected by a given solution out of a hundred solutions. Marxan’s good practice is to present 
maps showing the “best solution” (or a number of solutions with low scores) and the 
“selection frequency”. This is because the selection frequency is useful to explore the 
irreplaceability of planning units, that is, how irreplaceable is a planning unit in creating 
efficient solutions.  
 
The interpretation of Marxan results requires careful consideration of several aspects (see 
Ardron et al., 2010). First, the “selection frequency” map is built with an equal contribution 
of all solutions, even if some solutions have not met conservation objectives (this depends on 
SPF settings and other constraints). Therefore, it is important to investigate how many 
solutions are meeting or almost meeting all the conservation targets. Second, Marxan’s 
algorithm returns a near-optimal mathematical solution to the problem set (i.e., meeting 
objectives at minimum total cost) (Ball et al., 2009) within a number of given runs. However, 
best solution does not necessarily mean the “best spatial network configuration”. Indeed, 
within a given scenario there may be other good solutions (i.e., that meet all the conservation 
targets) that might form the basis of a network that is more practical to implement. As such, 
it is more useful for decision-makers to identify a range of near-optimal solutions that provide 
diverse options for a decision-maker, rather than a single optimal solution (Kirkpatrick et al., 
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1983). Finally, it is important to note that, while Marxan can help find efficient solutions to 
spatial prioritization problems, the tool helps to inform decisions but does not make them. 
The software is designed to be a decision support tool and cannot replace a spatial planning 
process – no single Marxan solution will ever deliver a finished reserved network plan. Rather, 
Marxan solutions should be used in an iterative planning process within a larger decision-
making process involving stakeholders and managers, where spatial configurations are 
reviewed, modified, and refined in multiple planning rounds (where not each necessarily has 
to involve the use of Marxan).  
 

Aims of the study 
 
In this study, we aimed to investigate SCP to create scenarios of a reserve network within 
SIOFA using Marxan as a decision-support tool. A standard Marxan cost layer based on fishing 
effort was used in an ecological Marxan analysis. Analyses were conducted for three different 
ecological targets (low, medium, and high). 
 
 

3. Methods 

In the following sections we describe the input layers required for the conservation planning, 
namely the PUs, the conservation features, and the cost layer. We then present the ecological 
scenarios run with Marxan. 

3.1 Study area 
 
The study area encompasses SIOFA’s Convention Area (Figure 1), with a total size of 
27,180,300 km2.  
 
SIOFA is subdivided into nine management subareas for fisheries. The main fisheries 
operating in the SIOFA area are for Patagonian toothfish (SIOFA subareas 3b, 7); orange 
roughy (topographic features in subareas 1, 2, 3a and 3b); alfonsino topographic features in 
subareas 1, 2, 3a and 3b); saurida and scads (subarea 8, mainly Saya de Malha); shallow-water 
snappers, emperors, and groupers (subarea 8, mainly Saya de Malha); deep-water snappers, 
lutjanids and Hapuka; and oilfish (southwest Indian Ocean) (report Summary Statistics SIOFA).  
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Figure 1. SIOFA’s Convention Area divided into nine management subareas, and location of SIOFA’s 
five interim protected areas (blue circles). 
 
 
There are currently five interim Protected Areas (IPAs) in SIOFA (Figure 1) where restrictions 
to bottom fisheries should be applied by Cooperating and Contracting Parties (CCPs) until the 
adoption of a dedicated research and management plan. Current restrictions to fisheries in 
IPAs include a prohibition for CCPs to engage in bottom fishing, excluding line and trap 
methods, and an obligation to have a scientific observer onboard at all times while fishing 
inside those areas.  
 
A geographic information system layer subdividing the study area in grid cells at 20 arc 
minutes and 30 arc minutes were provided by SIOFA Secretariat. We clipped those grid cells 
falling within SIOFA perimeter. At 20 arc minutes, this resulted in a total of 24,453 grid cells, 
hereafter “planning units”. Each planning unit (PU) is based on an equal-area grid square of 
1,369 km2. We chose this resolution to reflect the regional scale of the analysis and to scale 
the fishing information proportionally. We ensured that our spatial grids aligned with SIOFA’s 
spatial layers by using original SIOFA’s spatial layers, which form the basis for their own work. 
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3.2 Cost 
 
Cost was included as fishing effort, the most common way to capture cost in Marxan when 
applied to marine environments. Aggregated data for fishing effort were requested to SIOFA 
and received as number of fishing events and tonnes of catch per gear type: trawl, gillnets, 
line, and traps. Data were provided at a resolution of 10 arc min. Cost was included in the 
Marxan ecological analysis as catch weight in metric tonnes, aggregated for all gears.  
 
Data, originally provided in vector format, were rasterised to an equal area grid of the same 
resolution to that of the planning unit, by summing all values of surrounding cells. The 
aggregation reduced the number of individual information from 1,154 individual data points 
at 10 arc minute resolution to 403 data points at 20 arc minute resolution, i.e., a total of 403 
PU out of 24,453 had fishing effort as cost. 
 
Exploration of the number of fishing events and catch data prior to the analyses indicated a 
potential outlier in the data that skewed the distribution. The catch value was one order of 
magnitude larger than the remainder of the dataset (Figure 2). The record was kept as the 
extreme value was buffered when aggregating effort data at 20 arc minute resolution. The 
data point was located in SIOFA subdivision 8. 
 

 
Figure 2. Fish catch (in tonnes) by gear type. 
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3.3 Conservation features 
 
We identified three key data groups that should be considered as conservation features in 
the analyses: Ecologically or Biologically Significant Areas (EBSAs), geomorphic seafloor 
features, and bioregions of VME indicator taxa. In the following sections we elaborate on each 
of these features. 
 

3.3.1 EBSAs 
 
Ecologically or Biologically Significant Areas (EBSAs) are marine areas of potential importance 
to protect. These areas are thought to support the healthy functioning of the oceans and the 
services that it provides. Areas are identified based on scientific criteria that is similar to the 
criteria for the identification of Vulnerable Marine Ecosystems (VMEs (Annex I, Decision IX/20; 
CBD, 2008)): 
 

1. Uniqueness or Rarity 
2. Special importance for life history stages of species 
3. Importance for threatened, endangered or declining species and/or habitats 
4. Vulnerability, Fragility, Sensitivity, or Slow recovery 
5. Biological Productivity 
6. Biological Diversity 
7. Naturalness 

 
Selection of areas is carried out by States and intergovernmental organizations through 
regional workshops. The application of the EBSA criteria is an evolving process, where 
information is updated as new scientific and technical information becomes available. COP10 
encouraged Parties, other Governments, and competent intergovernmental organizations to 
cooperate, to identify and adopt appropriate measures for conservation and sustainable use 
in relation to EBSAs, including by establishing representative networks of marine protected 
areas in accordance with international law, including the United Nations Convention on the 
Law of the Sea, and based on the best scientific information available.  
 
Presently, there are 39 EBSAs in the Southern Indian Ocean (https://www.cbd.int/ebsa/), 11 
of which fall fully or partially within SIOFA’s Convention Area: Agulhas Front; Walters Shoal; 
Prince Edwards Islands, Del Caño Rise and Crozet Islands; Saya de Malha Bank; Rusky; East 
Broken Guyot; Mozambique Channel; Coral seamount and fracture zone feature; Atlantis 
Seamount; Central Indian Basin; Fools Flat (Figure 3). We downloaded the spatial layers for 
these 11 EBSAs as shapefiles (source: https://www.cbd.int/ebsa/) and merged all EBSAs into 
one single polygon, without distinguishing individual EBSAs. We used the layer as one single 
conservation layer since not all EBSAs fall in their totality within SIOFA.  
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Figure 3. Ecologically or Biologically Significant Areas (EBSAs) falling partially or totally in SIOFA’s 
Competence Area. 
 
 
 

3.3.2 Seafloor geomorphology 
 
Seabed geomorphology is a useful surrogate for biodiversity where ecological processes are 
known or suspected to link seabed structure and the distribution of benthic organisms 
(McArthur et al., 2010). Seabed geomorphology encompasses the shape and hardness of the 
seabed at a range of spatial scales and describes the processes behind these occurrences. At 
coarse scale, geomorphological features are categorical descriptors of the shape of the 
seabed (e.g., reefs, ridges, seamounts) describing structures that range in scale from 
thousands of km2 (e.g., basins) to a few hundred m2 (Harris et al., 2008). At a finer scale, 
substrate type has been shown to significantly differ in species composition, where hard 
substrate acts as a habitat to a larger proportion of sessile suspension feeders and soft 
sediments act as a habitat to a larger proportion of motile organisms (Harris et al., 2008).  
 
Surrogates are particularly useful for assessing biodiversity based on minimal biological 
information. In the Southern Indian Ocean, there is very scarce biological information 
available for deep-sea habitats. As a result, we included Harris et al. (2014)’s seafloor 
geomorphic features map of the global ocean as a conservation feature (Figure 4). The map 
includes 29 geomorphic feature categories, where the seafloor base layers shelf, slope, abyss 
and hadal zones are overlain by classification layers and discrete feature layers (Harris et al., 
2014). Two of the base layers (shelf and abyssal) are subdivided into classification layers based 
on roughness: low, medium, and high relief shelves; and abyssal plains, abyssal hills, and 
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abyssal mountains. Whereas the four base layers are mutually exclusive, the classification 
layers and feature layers may overlay each other (Harris et al., 2014). 
 
We plotted the map for SIOFA’s area and combined some of the 29 classes to reduce the risks 
of fragmentation of the proposed network in Marxan. Moreover, some of Harris et al. (2014)’s 
features overlay other features and some others are out of scope of the analysis (e.g., hadal 
depths). As a result, we reduced the classification to eleven features (Table 1), of which six 
were considered for this investigation due to their potential use as a surrogate for benthic 
biodiversity: Plateau, Rise, Shelf, Slope, Terrace, and Ridge. A detailed description of each 
feature type is presented in Harris et al. (2014). Seamounts were also considered, but we used 
the latest layer produced by Yesson et al. (2021), based on an updated bathymetric model. 
We describe this spatial layer in the next subsection. 
 
 
 
Table 1. Reclassification of Harris et al. (2014)’s geomorphic seafloor features for use in the 
conservation planning exercise in SIOFA’s Convention Area. 

Harris et al. (2014)’s original 
classification 

Modified or reclassified features from the original 
classification 

Abyss 
Basin 
Canyon 
Guyot 
Plateau 
Ridge 
Rise 
Seamount 
Shelf 
Slope  
Terrace 

Abyss 
Basin 
Canyon 
Guyot 
Plateau 
Ridge 
Rise 
Seamount 
Shelf 
Slope  
Terrace 

Bridge 
Escarpment 
Hadal 
Trenches 
Sills 

Not included (overlay other features) 
Not included (overlay other features) 
Not included (depths at out of scope) 
Not included (depths at out of scope) 
Not included (not equally mapped according to Harris 
et al. (2014)) 

Fan 
Rift valley 
Spreading Ridge 
Trough 

Rise (reclassified, as fans overlay rises) 
Ridge (reclassified; singular feature) 
Ridge (reclassified; singular feature) 
Abyss (reclassified; at abyssal depths) 
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Figure 4. Seafloor geomorphology map modified from Harris et al. (2014) with combined geomorphic 
categories considered for this study. 
 
 
 
Seamounts 
 
Regardless of the methodology used, it is important to keep prediction datasets up to date 
with the latest bathymetry grids. We therefore used the updated list of seamounts by Yesson 
et al. (2021) who, using the same methodology as Yesson et al. (2011), updated their 
seamount predictions using the latest available bathymetry. Yesson et al. (2021) remark that 
“the revised predictions are higher than other predictions that post-date Yesson et al. (2011) 
such as 24,643 seamounts in the Kim & Wessel (2011) dataset and 10,234 of Harris et al. 
(2014), but are still lower than some other predictions, for example, 68,669 of Costello et al. 
(2010)”. However, they note that each of these studies uses different ways of detecting 
seamounts where, for example, Harris et al. (2014) have a stricter definition of seamount that 
excludes features along ridges, while the methodology used in Yesson et al. (2021) (and 
Yesson et al. 2011) employs a distance-based filtering of adjacent features. 
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We downloaded their global seamount dataset from PANGAEA 
(https://doi.pangaea.de/10.1594/PANGAEA.757564) available in vector format and in two 
formats: as the centroids of the seamounts and as the bases of the predicted seamounts. 
We used the latter to calculate the feature contribution in each PU (Figure 5). 
 
Thus, in total there were seven geomorphic features used as surrogates of biodiversity. 
 
 
 

 
Figure 5. Seamount bases distribution in SIOFA area obtained from Yesson et al. (2021). 

 
 
 

3.3.3 Bioregionalization 
 
Biogeographical classifications, or bioregionalizations (Woolley et al., 2020), are the building 
blocks for the planning and implementation process of management measures and are highly 
connected to the development of marine protected areas (Rice et al., 2011). This is because 
bioregionalizations enable the identification of units that should be represented in a network, 
ensuring the protection of biogeographically unique areas and the development of a network 
that considers representativity, connectivity and replication of sites (Rice et al., 2011). 
Previous predictive bioregionalization work was carried out for SIOFA under project PAE2020-
02 using three approaches commonly referred to as “group first, then predict”, “predict first, 
then group” and “analyse simultaneously” (Ramiro-Sánchez & Leroy, 2022). An extensive 
discussion on the advantages and limitations of each resulting bioregionalization scheme was 
presented in the corresponding project report. Despite some of the limitations from these 
approaches, they still represent an improvement over other existing classifications (e.g., the 
Global Open Oceans and Deep Seabed classification). Out of the three approaches, the “group 
first, then predict” yielded most robust results. Consequently, we selected this 
biogeographical classification as an input layer in the conservation planning. Specifically, we 
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selected the nested subregions, as these provide finer detail of potential biogeographic 
patterns in the deep sea of the Southern Indian Ocean (Figure 6). 
 
 

 
Figure 6. Predicted biogeographical regions of VME indicator taxa in the Southern Indian Ocean at the 
second level of the hierarchy. Areas with low confidence in the prediction are shown in darker shades 
of grey. Note that, because of the low number of points, we could not reliably evaluate these 
predictions. 

 

3.4 Conservation planning with Marxan 
 
To select priority areas for marine conservation, we initially defined three broad conservation 
goals as follows: 

• to protect 10% of each of the 7 seafloor geomorphic habitats, reflecting CBD Aichi 
Target 11 protection targets of 10% (CBD, 2010); 

• to protect 10% of each of the 8 bioregions in order to promote the long-term 
population viability of marine populations by maintaining natural habitats for the 
different communities of the Indian Ocean; 
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• to protect 10% of EBSA, helping to align national and regional priorities with globally 
recognized areas (Maina et al., 2020).  

 
Thus, we considered the ecological conservation target of 10% as a baseline target for all 
conservation features, to which variations could be applied (i.e., lower or increase the target). 
 
We included a cost layer based on the aggregated fishing effort values (as tonnes of catch) 
provided by SIOFA Secretariat, because including spatially explicit costs within Marxan allows 
meeting conservation targets while minimizing costs to fisheries, reflecting spatial planning 
best practice (Ban & Klein, 2009; Watts et al., 2017). Planning units were given a minimum 
cost value of “1” to allow for the Marxan algorithm to run (a standard practice in Marxan 
analyses).  
 
Based on the initially defined baseline scenario, we defined two additional scenarios with a 
lower and higher ecological conservation target for each of the conservation features: 5% and 
15% conservation targets. Thus, we had three scenarios that we rename henceforth as “low-
target” (5% target), “medium-target” (10% target) and “high-target” (15% target) scenarios. 
In the three scenarios, cost was treated the same. An exploratory analysis suggested to lower 
the target for Bioregion 3.1 (the largest; Figure 6). On the premise that it will be less impacted 
by certain human activities because it characterises the abyssal zone, we lowered its target 
to 2.5% for all three scenarios. In addition, we set three additional scenarios with the same 
ecological targets and settings, except for cost. For these other three scenarios, there was no 
cost associated to the planning units (cost was set to 1 for all planning units to allow the 
Marxan algorithm to run), as the exploration of scenarios with no cost allows for the potential 
identification of significant biodiversity areas without any constraint. Therefore, in total, we 
explored six scenarios: three ecological target levels (low, medium, and high) for two cost 
scenarios (tonnes of catch or no cost) (Table 2). 
 
Marxan provides the option to systematically include (lock-in) areas that should be part of the 
reserve network (e.g., existing protected areas that already contribute to the ecological 
targets) or systematically exclude (lock-out) areas that should not be part of the network (e.g., 
areas where protected areas should not be established). Marxan will tend to build onto 
locked-in areas (if there are ecological attributes nearby), whereas it will avoid attaching sites 
to locked-out areas (unless there are few other options). Those areas should normally be no-
take zones as Marxan will assume that all the species and habitats in these zones are fully 
protected. Similarly, areas can be identified to be locked out if there is a reason those areas 
should not be part of any protected area network. Here, none of the scenarios had PU locked-
in or locked-out.  
 
For each scenario, we calibrated the number of iterations to ensure that the algorithm 
adequately searched the sampling space and looked for improvements; the number of runs 
(or solutions) to ensure that the algorithm did not get stuck in local minima; the Boundary 
Length Modifier (BLM) using the calibration method of Stewart & Possingham (2005) to plan 
for spatially clumped reserves, which minimizes the trade-off in reduced boundaries and 
increased costs; and the Species Penalty Factor (SPF) to meet all ecological targets. Details on 
the calibration of all parameters are found in Appendix A for scenarios with cost and in 
Appendix B for scenarios with no cost. 
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For each scenario with cost, we provide the “selection frequency” map and the “best run” (a 
near optimal configuration of zones and one with the lowest overall objective function score 
across runs) maps. For each scenario with no cost, we provide the “selection frequency” map 
and evaluate whether these maps encompass SIOFA’s existing IPAs, by overlapping their 
spatial layers. 
 
We used the QMarxan Toolbox v2.0.1 plugin (Apropos Information Systems Inc.) for QGIS 
(QGIS Development Team, 2022) to prepare Marxan’s input files and calibrate the scenarios 
with the available calibration functions. For Marxan, we used Marxan v2.4.3. All manipulation 
of geographic layers, input calculations (e.g., area calculations) and results preparation were 
performed using the R Statistical Software (R Core Team, 2021). 
 
 
Table 2. Summary of the scenarios with varying parameters: the boundary Length Modifier (BLM), 
cost layer, status of the planning units (locked-in or not in the analysis), and different conservation 
targets for the conservation features. 

Scenario Target Conservation features Cost 

Low target 5 % 
Bioregions, seafloor 

geomorphology, and EBSA 
Catch (in metric 

tonnes) 

Medium target 10 % 
Bioregions, seafloor 

geomorphology, and EBSA 
Catch (in metric 

tonnes) 

High target 15 % 
Bioregions, seafloor 

geomorphology, and EBSA 
Catch (in metric 

tonnes) 

Low target – no cost 5 % 
Bioregions, seafloor 

geomorphology, and EBSA Equal cost for all PUs 

Medium target – no cost 10 % 
Bioregions, seafloor 

geomorphology, and EBSA Equal cost for all PUs 

High target – no cost 15 % 
Bioregions, seafloor 

geomorphology, and EBSA Equal cost for all PUs 
 
 
 

4. Results 

In total, there were 16 ecological features to consider for conservation in the Marxan 
analyses. Table 3 lists the ecological features for which targets were set, grouped by theme. 
Individual PUs can include 1 to 7 ecological features, with only 26 PUs that do not have any 
ecological feature, found mainly in the eastern part of SIOFA (at 40°S, 110°E) and at 
coordinates 25°S, 70°E (Figure 7). Although we expect to have one ecological feature at least 
per PU given the probabilistic nature of the bioregionalization layer, the 26 PUs with no 
assigned bioregion corresponded to pixels that had equal maximum suitability for two 
bioregions at the same time. Since the final bioregionalization map only shows one subregion 
per pixel (i.e., bioregions are mutually exclusive), we decided to leave these pixels 
unclassified. On the other hand, areas with the highest concentration of features are found 
in Saya de Malha, the western side of Walters Shoal, the southwest Indian Ridge, the southern 
slope of Broken Ridge, and the ridges in general. The lowest numbers of ecological features 
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considered in this analysis are found at abyssal depths (> 3,500 m water depth) of SIOFA’s 
Convention Area, since the selected geomorphic features did not include features at those 
depths. 
 
Marxan calibrations were performed for all three ecological scenarios following the guidelines 
of the Marxan Good Practices Handbook (Ardron et al., 2010) and the QMarxan Toolbox 
plugin (Apropos Information Systems Inc.)(Apropos Information Systems, v2.0.2 ). Description 
of the results and process followed can be found in Appendix A and Appendix B. 
 
In the next sections, we provide a detailed description of the Marxan results for each of the 
scenarios with the three ecological conservation targets, including selection frequency and 
best solution (i.e., best score) maps.  
 
 
 
Table 3. Group of ecological features included in the ecological Marxan analyses, the number of 
planning units (PUs) and percentage of total PUs they occupy. 

Group name Conservation 
features 

No. of 
features per 

group 

Total no. of PUs 
present 

% of Total 
Area 

EBSA EBSA 1 4,381 17.92 
Bioregionalization Bio_1 (bioregion 1.1)  2,114 8.65 

Bio_2 (bioregion 1.2)  3,944 16.12 
Bio_3 (bioregion 1.3)  3,029 12.39 
Bio_4 (bioregion 1.5)  2,760 11.29 
Bio_5 (bioregion 1.7)  2,514 10.28 
Bio_6 (bioregion 2.1)  3,805 15.56 
Bio_7 (bioregion 2.4)  90 0.36 
Bio_8 (bioregion 3.1)  9,644 39.44 

Total 8 27,900 114.09* 
Seafloor 
geomorphology 

Ridge  2,950 12.06 
Rise  203 0.83 

Plateau  1,374 5.62 
Canyon  148 0.61 

Slope  75 0.31 
Shelf  69 0.28 

Seamount  3,540 14.47 
Total 7 8,359 34.18 

*This value amounts to more than 100% because features within the group overlap with each other. 
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Figure 7. Total number of ecological features in each PU.  
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4.1 Scenarios with cost 
 
4.1.1  Low target scenario 
 
Marxan analyses used 80 million iterations, 100 solutions, a variable SPF (from 1 to 1.4) and 
a BLM of 0.01. The selection frequency map is presented together with three individual 
solutions, including the best solution (Figure 8). 
 
 

 
Figure 8. Ecological Marxan analysis results for the low-target scenario (SPF = 1-1.4; BLM = 0.01, 
iterations = 80 million, solutions = 100): selection frequency (Map A), which indicates the number of 
times a PU was selected in the analysis out of 100 possible solutions; best solution, or solution with the 
lowest Marxan score (Map B); second best solution (Map C); and third best solution (Map D).  
 
 
The area needed to meet at least 99% of all targets based on the average values of 100 
Marxan solutions is 3.8 % of the total study area. The three solutions with the lowest scores 
(including the best solution) are similar in terms of area selected, cost and boundary length 
(Table 4). For the best solution, the most contiguous set of PUs have similar areas. These are 
found in the northeast of Seychelles, SIOFA border at Del Caño Rise, an eastward area of the 
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SW Indian Ocean Ridge at the latitude of Walters Shoal, the northwest and east of Saint Paul 
and Amsterdam Islands (over the Mid-Indian Ridge), southeast Indian Ridge, south of Broken 
Ridge, Ninety East Ridge, and the Wallaby and Zenith Plateaus. 
 
 
 
Table 4. Summary information on solutions presented from the low-target conservation scenario. 

  100 Solution 
Avg. 

Best solution 
(lowest score) 2nd Best 3rd Best 

Scorea 938.9 937.93 938.26 938.29 
Cost (Tonnes)b 927.75 928 927 928 
Cost (% from total)c 2.34 2.34 2.34 2.34 
Area selectedd 1,270,090 1,270,432 1,269,063 1,270,432 
% of total area 3.79% 3.80% 3.79% 3.80% 
Boundary Lengthe 1006.88 932 968 982 
Shortfallf 1,190,313,150 6,915,49,000 1,688,810,000 482,255,000 
Missing targetsg 0.08 0 0 0 
MPM 0.988 0.998 0.995 0.999 

 a Total score of the solution, which is the sum of the PU cost, the boundary cost, and the penalty (see Eq. 1) 
 b Cost of the solution, which in this case corresponds to tonnes of fish catch 
 c Total cost = 39,657.38 (with 1s); 15,607.38 (without 1s) 
 d Area measured in km2. Size of PU 37 km x 37 km. Total area = 1,369 km2 x 24,453 PUs = 33,476,157 km2 
 e Total external perimeter of all the PUs forming a solution (set to 1; see Methods) = 49,338 
 f Combined shortfall for missing features (in m2) 
 g Number of features missing targets 
 
 
 
When exploring the distribution of the selection frequency values (Figure 8A), 13% (449 out 
of 3,409 PUs) of the PUs were selected in >80 solutions. Notably, below 20°S the percentage 
of PUs selected showed a consistent pattern with 34% of PUs (449 out of 1,326) selected in 
at least 80 solutions, whereas at latitudes north of 20°S there were no PUs appearing in at 
least 80 solutions (0 out of 2,083).  
 
The amount of each ecological feature represented in the best solution is presented in Table 
5. All ecological features met their specific targets in this scenario. Many features exceeded 
their target; this indicates that ecological features overlap in multiple different combinations 
in multiple locations with some of them present in most overlaps. For instance, the target set 
for the feature “Plateau” and “Ridge” is met at 143% and 142%, respectively. Having features 
that exceed their targets cannot be avoided in Marxan analysis and trying to reduce those 
targets is often impossible without reducing other targets below their 100% goal. It is almost 
impossible to select a combination of PUs that would meet every single target without 
overshooting at least some of the targets significantly. These “overshoots” do not mean that 
more area is included in the solutions than is necessary to meet all targets, i.e., they are not 
indicative of inefficient spatial configurations. Rather, they highlight that some features are 
driving the analysis much more than others.  
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Table 5. Detailed information on the amount held inside the best solution in the low-target scenario 
for all ecological features, the area that occupies inside the solution (no. of occurrences held by PU 
area size), the percentage occupied from the total area of the bioregion and if targets were met and 
by how much (in percentage). 

Feature 
Name Target Amount Held 

Occurrences 
Held 

Area in 
solution 
(km2) 

% of 
total 
area Target Met 

Proportion 
met** 

EBSA 2.2375E+11 2.4296E+11 222 303918 0.91 yes 108.6 

Seamount 8.0733E+10 9.1257E+10 193 264217 0.79 yes 113.0 

Shelf 2680618416 3395118970 3 4107 0.01 yes 126.7 

Slope 1368180499 1552415529 3 4107 0.01 yes 113.5 

Canyon 1496620585 1658627894 4 5476 0.02 yes 110.8 

Plateau 5.1481E+10 7.3682E+10 111 151959 0.45 yes 143.1 

Rise 9119262750 9914347185 10 13690 0.04 yes 108.7 

Ridge 8.2223E+10 1.1694E+11 213 291597 0.87 yes 142.2 

bio_7 2582694486 2592280050 4 5476 0.02 yes 100.4 

bio_6 1.6086E+11 1.6084E+11 165 225885 0.67 yes 100.0 

bio_3 1.3997E+11 1.3989E+11 140 191660 0.57 yes 99.9 

bio_4 1.2236E+11 1.2207E+11 121 165649 0.49 yes 99.8 

bio_5 1.0594E+11 1.0585E+11 126 172494 0.52 yes 99.9 

bio_2 1.9315E+11 1.9312E+11 167 228623 0.68 yes 100.0 

bio_8 2.7051E+11 2.7052E+11 221 302549 0.90 yes 100.0 

bio_1 1.1835E+11 1.1817E+11 109 149221 0.45 yes 99.8 
**This is calculated by Amount Held * 100/ Target Amount 
 
 
4.1.2  Medium target scenario 
 
Marxan analyses used 80 million iterations, 100 solutions, a variable SPF (from 1 to 1.3) and 
a BLM of 0.01. The selection frequency map is presented together with three individual 
solutions, including the best solution (Figure 9). 
 
The area needed to meet at least 99% of all targets based on the average values of 100 
Marxan solutions is 9.25 % of the total study area. The three solutions with the lowest scores 
(including the best solution) are similar in terms of area selected, cost and boundary length 
(Table 6). The solution is also similar to the low-target scenario in terms of the distribution of 
the reserves, where PUs have been selected and built around the same areas. 
 
When exploring the distribution of the selection frequency values (Figure 9A), about 27 % 
(1,144 out of 4,193 PUs) of the PUs were selected in >80 solutions. Notably, below 20°S the 
percentage of PUs selected showed a consistent pattern with 48% of PUs (1,032 out of 2,164) 
were selected in at least 80 solutions, whereas at latitudes north of 20°S the percentage of 
PUs appearing in at least 80 solutions was 16% (325 out of 2,029). 
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The amount of each ecological feature represented in the best solution is presented in Table 
7. All ecological features met their specific targets in this scenario. Three features exceeded 
their target too. In this case, the feature “Rise” met its target at 165%. 
 
 

 
Figure 9. Ecological Marxan analysis results for the medium-target scenario (SPF = 1-1.3; BLM = 0.01, 
iterations = 80 million, solutions = 100): selection frequency (Map A), which indicates the number of 
times a PU was selected in the analysis out of 100 possible solutions; best solution, or solution with the 
lowest Marxan score (Map B); second best solution (Map C); and third best solution (Map D).  
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Table 6. Summary information on solutions presented from the medium-target conservation scenario. 
  100 Solution 

Avg. Best solution  2nd Best 3rd Best 
Scorea 1682.26 1681.14 1681.5 1681.54 

Cost (Tonnes)b 1666.96 1667 1666 1667 
Cost (% from total)c 4.20 4.20 4.20 4.20 
Area selectedd 2,282,068 2,282,123 2,280,754 2,282,123 
% of total area 6.82 6.82 6.81 6.82 
Boundary Lengthe 1409.15 1340 1384 1332 
Shortfallf 1,339,261,210 7.47E+08 1.78E+09 1.44E+09 
Missing targetsg 0.01 0 0 0 
MPM 0.992 0.999 0.999 0.999 

a Total score of the solution, which is the sum of the PU cost, the boundary cost and the penalty (see Eq. 1) 
 b Cost of the solution, which in this case corresponds to tonnes of fish catch 
 c Total cost = 39,657.38 (with 1s); 15,607.38 (without 1s) 
 d Area measured in km2. Size of PU 37 km x 37 km. Total area = 1,369 km2 x 24,453 PUs = 33,476,157 km2 
 e Total external perimeter of all the PUs forming a solution (set to 1; see Methods) = 49,338 
 f Combined shortfall for missing features (in m2) 
 g Number of features missing targets 
 
 
 
 
Table 7. Detailed information on the amount held inside the best solution in the medium-target 
scenario for all ecological features, the area that occupies inside the solution (no. of occurrences held 
by PU area size), the percentage occupied from the total area of the bioregion and if targets were met 
and by how much (in percentage). 

Feature 
Name Target Amount Held 

Occurrences 
Held 

Area in  
solution  
(km2) 

% of 
total 
area 

Target 
Met 

Proportion 
met** 

EBSA 4.475E+11 4.4757E+11 406 555814 1.66 yes 100.01 
Seamount 1.6147E+11 1.6363E+11 326 446294 1.33 yes 101.34 
Shelf 5361236831 6651421380 8 10952 0.03 yes 124.07 
Slope 2736360997 2811823449 5 6845 0.02 yes 102.76 
Canyon 2993241171 3011457597 10 13690 0.04 yes 100.61 

Plateau 1.0296E+11 1.1732E+11 178 243682 0.73 yes 113.95 
Rise 1.8239E+10 3.0195E+10 28 38332 0.11 yes 165.56 
Ridge 1.6445E+11 1.665E+11 318 435342 1.30 yes 101.25 
bio_7 5165388973 5158395590 7 9583 0.03 yes 99.86 
bio_6 3.2173E+11 3.2137E+11 335 458615 1.37 yes 99.89 
bio_3 2.7994E+11 2.7977E+11 289 395641 1.18 yes 99.94 
bio_4 2.4472E+11 2.4461E+11 248 339512 1.01 yes 99.96 
bio_5 2.1188E+11 2.1184E+11 248 339512 1.01 yes 99.98 
bio_2 3.8631E+11 3.8626E+11 330 451770 1.35 yes 99.99 
bio_8 2.7051E+11 2.705E+11 260 355940 1.06 yes 100.00 
bio_1 2.367E+11 2.3667E+11 207 283383 0.85 yes 99.99 

**This is calculated by Amount Held * 100/ Target Amount 
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4.1.3  High target scenario 
 
Marxan analyses used 80 million iterations, 100 solutions, a variable SPF (from 1 to 1.1) and 
a BLM of 0.01. The selection frequency map is presented together with three individual 
solutions, including the best solution (Figure 10). 
 
The area needed to meet at least 99% of all targets based on the average values of 100 
Marxan solutions is 9.86% of the total study area. The three solutions with the lowest scores 
(including the best solution) are similar in terms of area selected, cost and boundary length 
(Table 8). Again, the solution is also similar to the low and medium-target scenarios in terms 
of the distribution of the reserves, where PUs have been selected and built around the same 
areas. 
 
When exploring the distribution of the selection frequency values (Figure 10A), about 44 % 
(1,903 out of 4,344 PUs) of the PUs were selected in >80 solutions. Notably, below 20°S the 
percentage of PUs selected showed a consistent pattern with 58% of PUs (1,669 out of 2,902) 
were selected in at least 80 solutions, and at latitudes north of 20°S the percentage of PUs 
appearing in at least 80 solutions was 33% (481 out of 1,442). 
 
The amount of each ecological feature represented in the best solution is presented in Table 
9. All ecological features met their specific targets in this scenario. Some features exceeded 
their target by 15%. 
 
 
 
Table 8. Summary information on solutions presented from the high-target conservation scenario. 

  
100 Solution 
Avg. 

Best solution 
(lowest score) 2nd Best 3rd Best 

Scorea 2431.29 2430.19 2430.67 2430.68 

Cost (Tonnes)b 2412.52 2412 2412 2412 
Cost (% from total)c 6.08 6.08 6.08 6.08 
Area selectedd 3,302,740 3,302,028 3,302,028 3,302,028 
% of total area 9.87 9.86 9.86 9.86 
Boundary Lengthe 1763.26 1695 1725 1743 
Shortfallf 1,252,885,980 1.35E+09 1.68E+09 1.24E+09 
Missing targetsg 0.02 0 0 0 
MPM 0.993 0.998 0.995 0.986 

a Total score of the solution, which is the sum of the PU cost, the boundary cost, and the penalty (see Eq. 1) 
 b Cost of the solution, which in this case corresponds to tonnes of fish catch 
 c Total cost = 39,657.38 (with 1s); 15,607.38 (without 1s) 
 d Area measured in km2. Size of PU 37 km x 37 km. Total area = 1,369 km2 x 24,453 PUs = 33,476,157 km2 
 e Total external perimeter of all the PUs forming a solution (set to 1; see Methods) = 49,338 
 f Combined shortfall for missing features (in m2) 
 g Number of features missing targets 
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Figure 10. Ecological Marxan analysis results for the high-target scenario (SPF = 1 -1.1; BLM = 0.01, 
iterations = 80 million, solutions = 100): selection frequency (Map A), which indicates the number of 
times a PU was selected in the analysis out of 100 possible solutions; best solution, or solution with the 
lowest Marxan score (Map B); second best solution (Map C); and third best solution (Map D).  
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Table 9. Detailed information on the amount held inside the best solution in the high-target scenario 
for all ecological features, the area that occupies inside the solution (no. of occurrences held by PU 
area size), the percentage occupied from the total area of the bioregion and if targets were met and 
by how much (in percentage). 

Feature 
Name Target Amount Held 

Occurrence
s Held 

Area in 
solution 
(km2) 

% of 
total 
area 

Target 
Met 

Proportion 
met** 

EBSA 6.7126E+11 6.7137E+11 612 837828 2.50 yes 100.02 
Seamount 2.422E+11 2.4323E+11 497 680393 2.03 yes 100.43 
Shelf 8041855247 9286416921 13 17797 0.05 yes 115.48 
Slope 4104541496 4239923171 9 12321 0.04 yes 103.30 
Canyon 4489861756 4502194408 16 21904 0.07 yes 100.27 
Plateau 1.5444E+11 1.5643E+11 229 313501 0.94 yes 101.28 
Rise 2.7358E+10 3.1791E+10 31 42439 0.13 yes 116.21 
Ridge 2.4667E+11 2.6498E+11 457 625633 1.87 yes 107.42 
bio_7 7748083459 7736242524 10 13690 0.04 yes 99.85 
bio_6 4.8259E+11 4.8232E+11 507 694083 2.07 yes 99.94 
bio_3 4.1992E+11 4.1966E+11 431 590039 1.76 yes 99.94 
bio_4 3.6707E+11 3.6688E+11 373 510637 1.53 yes 99.95 
bio_5 3.1781E+11 3.1767E+11 362 495578 1.48 yes 99.95 
bio_2 5.7946E+11 5.793E+11 499 683131 2.04 yes 99.97 
bio_8 2.7051E+11 2.7051E+11 277 379213 1.13 yes 100.00 
bio_1 3.5504E+11 3.5474E+11 299 409331 1.22 yes 99.92 

**This is calculated by Amount Held * 100/ Target Amount 
 
 
 
Best solutions for scenarios low, medium, and high target were compared with each other in 
terms of the area lost for fishing (or total area selected as part of the reserve network) if those 
areas were protected. This analysis was performed by combining the polygons defined by the 
best solution with the layer containing the aggregated fishing catch. None of the three 
scenarios overlapped with the PUs containing fishing information.  
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4.2 Scenarios with no cost 
 
The scenarios with no cost were also calibrated based on the calibration of scenarios with 
cost. We present here only the selection frequency maps, as the aim of these no cost 
scenarios is to highlight potential biodiversity areas. We present the selection frequency maps 
when there is no constraint in level of compactness (BLM = 0) and at the same level of 
compactness (BLM = 0.01) calibrated for the cost scenarios. Calibration details for these 
scenarios can be found in Appendix B. 
 

4.2.1 Low target, no cost 
 
Marxan analyses used 80 million iterations, 100 solutions, and a variable SPF from 1 to 1.6 
for a BLM set to 0. For a BLM of 0.01, the SPF varied from 1 to 1.7. The selection frequency 
map of each scenario configuration is presented in Figure 11. 
 
Assessment of the presence of any of the five interim BPAs in the selection frequency maps 
revealed the inclusion of part of “Coral” one time when there was no constraint for the level 
of compactness (i.e., BLM = 0). When the constraint of compactness increased (i.e., BLM = 
0.01), no PUs that included IPAs were selected. 
 
 
 

 
Figure 11. Selection frequency maps for the low target, no cost, scenario for two BLM values. 
 
 
 

4.2.2 Medium target, no cost 
 
Marxan analyses used 80 million iterations, 100 solutions, and a variable SPF from 1 to 1.3 
for a BLM set to 0. For a BLM of 0.01, the SPF varied from 1 to 1.4. The selection frequency 
map of each scenario configuration is presented in Figure 12. 
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When there was no constraint for the level of compactness (i.e., BLM = 0), the assessment of 
the presence of any of the five IPAs in the selection frequency maps revealed the inclusion of 
“Coral” in six PUs with a selection frequency of 1 to 7 times. It also revealed the inclusion of 
“Fool’s Flat” in three PUs with a selection frequency of 1 to 2 times. When the constraint of 
compactness increased (i.e., for BLM = 0.01), no PUs that included IPAs were selected. 
 
 
 

 
Figure 12. Selection frequency maps for the medium target, no cost, scenario for two BLM values. 
 
 
 

4.2.3 High target, no cost 
 
Marxan analyses used 80 million iterations, 100 solutions, and a variable SPF from 1 to 1.2 
for a BLM set to 0. For a BLM of 0.01, the SPF varied from 1 to 1.1. The selection frequency 
map of each scenario configuration is presented in Figure 13. 
 
When there was no constraint for the level of compactness (i.e., BLM = 0), the assessment of 
the presence of any of the five IPAs in the selection frequency maps revealed the inclusion of 
four IPAs: “Fools Flat” in one PU (selected three times), “Walters Shoal” in five PUs (selected 
ranging from one to five times), “Coral” in ten PUs (with a selection frequency of 1 to 13 
times), and “Middle of What” in one PU (selected five times). When the constraint in 
compactness increased (i.e., for BLM = 0.01), no PUs that included IPAs were selected. 
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Figure 13. Selection frequency maps for the high target, no cost, scenario for two BLM values. 
 
 
 

5. Discussion 

This study aimed to investigate systematic conservation planning for SIOFA using the decision-
support tool Marxan. We described the procedure to perform systematic conservation 
planning, the software Marxan, the parameters involved in the analysis, the rationale for the 
choice of conservation features and the calibration needed to meet targets. For each of the 
three cost scenarios run, we showed the selection frequencies and the best solutions in terms 
of lowest score according to the objective function that Marxan solves. These configurations 
should not be interpreted as best solutions, rather, they are a very good solution within a 
continuum of options (Ardron et al., 2010).  
 
The scenarios presented met the ecological targets set for the planning, and for some even 
exceeded them. As previously mentioned, having features that exceed their targets cannot 
be avoided in Marxan analysis and trying to reduce those targets is often impossible without 
reducing other targets below their 100% goal. The total area needed to meet targets varied 
according to the cost function and the magnitude of the ecological targets. The low-ecological 
target scenario required 3.8% of the overall area, the medium target 6.82% and the high 
target 9.83% of the overall area. These proportions are relatively low due to the fact that the 
number of conservation features was low and, hence, there were less constraints on Marxan 
to find efficient solutions. 
 
We carried out a conventional Marxan analysis where Marxan attempts to balance network 
design achieving ecological targets while taking into account the spatial distribution of 
associated economic costs of different places – in this case, based on aggregated catch. The 
presented solutions did not overlap with the aggregated layer of fishing catch, as Marxan 
sought to avoid losing potentially valuable areas for fishing. Indeed, fishing areas were 
completely avoided. In this case, even if equity across fisheries was not considered, despite 
different gears having different impact on the seafloor, none of the individual fishing 
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footprints (by gear type) would be impacted. However, these results should be interpreted 
relative to the BLM chosen, that is, the level of compactness and the number of conservation 
features included in the investigation. Other level of compactness and inclusion of 
conservation features could come with actual loss of fishing areas.  
 
The strong role of the spatial distribution of cost in the results can be understood by two 
aspects. First, there is the sheer aspect of space: SIOFA encompasses a very large area where 
bottom fishing is concentrated in particular areas. Thus, there is “enough” remaining area for 
Marxan’s algorithm to reach efficient solutions without impacting important fishing grounds. 
Second, all models are dependent on the information which they are fed and Marxan’s 
objective function is no different. In other words, results are dependent on the ecological 
input layers that one deems appropriate to explore. Here, as a first exploration, our choice of 
ecological targets (i.e., the percentage for conservation) was based on the literature and 
international agreements. However, ecologically, this may result in fragmented or inadequate 
or incoherent levels of protection. For instance, one of the conservation features in this 
investigation was “Canyons”, as canyons are an important habitat for benthic organisms 
(Pearman et al., 2020). Setting aside 10% of “canyon” habitat for protection makes little sense 
ecologically. Rather, an alternative would be to consider canyons as a whole and aim for the 
protection of the number of canyons (e.g., 10% of canyons, or any other ecological target), 
but not the actual area. The same rationale could be applied for seamounts (see Watling & 
Auster, 2021 for a discussion on the protection of seamounts). In contrast, for layers such as 
that of the bioregions, it makes sense to deal with the total area or coverage rather than with 
individual occurrences. Thus, although in this investigation we only considered coverage, 
SIOFA should consider the nature of the ecological features included in future analyses and 
set appropriate targets that make ecological sense. This implementation is possible because 
Marxan allows to include conservation features in three ways: as occurrences, as proportion 
(as we did here), or as a set amount. 
 
In addition to considering how to integrate each layer of information, SIOFA should convene 
on appropriate target levels for the protection of each feature. On the one hand, there is the 
issue of uncertainty associated with some of the conservation layers. Some features, such as 
the bioregionalization, are work in progress but considerably influence the Marxan analysis. 
In order to reduce the associated uncertainty to this layer, higher target levels could be 
applied to other “more certain” features, such as the seamounts, or the individual EBSAs. The 
Southern Indian Ocean, especially the areas beyond national jurisdiction, are poorly known; 
therefore, how to include the selected features requires careful evaluation. 
 
On the other hand, there is the issue of varying sizes between conservation features. For 
instance, in a first exploratory analysis, we included the conservation feature “bioregion 3.1” 
(here as “bio_8”) with the same percentage of protection as the other features. Bioregion 3.1 
was previously characterised as the prevalent bioregion at abyssal depths (>3,500m water 
depth). This feature occupies the greatest number of PUs in the study area (Table 3) which, 
when setting its protection percentage to the same as other bioregions, also resulted in large 
areas in the reserve network. Therefore, different protection levels (i.e., ecological targets) 
can be set for the conservation features. We exemplified it by lowering the ecological target 
for Bioregion 3.1 on the premise that it will be less impacted by certain human activities (e.g., 
here fishing because the depths are out of technological capacity). Yet, caution must be 
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exerted because analysis of fishing activity in ToR5 indicated that fishing occurs within this 
bioregion, therefore this bioregion cannot be excluded from the Marxan analyses. The reason 
behind this apparent discrepancy is due to the spatial resolution of the bioregionalization 
models (at 1° latitude-longitude). A coarse spatial resolution will aggregate into one single 
value many different depths, which becomes especially critical when these cells are on the 
edge of topographic complex areas, such as ridges, where depth usually varies more rapidly 
along vertical than horizontal scales. Thus, our potential solution was to set a lower 
conservation target for this feature to reduce the protection area (0.025% for all target 
scenarios). Other options could include the weighting of some areas according to the level of 
confidence of each pixel (based on the bioregionalization results).  
 
Future work should assess the effect of varying the size of the planning units to 1° latitude-
longitude. For this investigation we selected planning units of dimension 37 km x 37 km on 
the basis of a compromise between manageable units and informative layers. This resolution 
was however not shared by any of the two most important layers: fishing effort (the ‘cost’) 
was available at 10 arc minutes and the bioregionalization model at 1° latitude-longitude 
(approximately 111 km x 111 km at the equator). In practice this meant that we aggregated 
the fishing data and disaggregated raster cells for the bioregions to align resolutions at 37 x 
37 km – but note that this alignment of resolutions does not improve the resolution of 
bioregions. In fact, the consequence of the difference in the resolutions was evidenced in 
Figure 7 (sum of the number of features per PU), where there are some lines that illustrate 
the effect of the coarser resolution of bioregions. Indeed, when Figure 6 is compared against 
the maps of the individual features, it becomes clear that the lines stem from the 
bioregionalization map: the original grid cells (at 1° latitude-longitude) become sparse when 
disaggregated into smaller units. This is the reason why the discrepancy between the original 
spatial resolution of the input layers, namely the bioregions and the fishing footprint, should 
be further investigated using a grid with PUs of 1° latitude-longitude. Although not 
appropriate for management because of such coarse resolution, it will still be valuable to 
examine the potential differences in the spatial configuration of the reserves and changes in 
cost. 
 
We did not consider the inclusion of SIOFA’s five IPAs in the analyses as Marxan considers 
that such areas should be entirely closed to all human activities that can impact species. 
Nonetheless, the ecological Marxan analysis provided some insights about the adequacy of 
the location of these IPAs. To assess if these areas were selected in any of the scenarios or 
highlighted as important areas (relative to the conservation features included in this 
investigation), we overlapped the resulting selection frequency maps and reserve networks 
of each ecological scenario with cost with the IPAs. Whilst none of the maps integrated these 
areas, the selection frequency maps of the scenarios with no cost selected PUs that included, 
with a low frequency, some of the IPAs. This does not mean that those areas (the IPAs) are 
not biologically important. Rather, it means that we don’t have sufficient data to be able to 
detect the importance of these areas. As evidenced in Ramiro-Sánchez & Leroy (2022) where 
we showed data shortfalls, the current knowledge on the distribution of biodiversity and 
VMEs in the SIOFA area is extremely deficient. The suggested areas identified by Marxan in 
this report are based on the analysis of all the available knowledge in the SIOFA area. 
Alternatively, we suggest considering additional useful strategies to cope with data shortfalls, 
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which could include locations where the move-on rule has been triggered or lock-in areas 
with significant biological evidence. 
 
We also insist on the necessity to acquire more data on the distribution of VME indicators in 
the SIOFA area, which remains deficient. Indeed, data shortfalls made it impossible to map 
the observed VME diversity, because almost the entire SIOFA area was empty from samples, 
or to predict the spatial distribution of VME diversity, because the models were too uncertain 
to be useful (see report on ToR 3). Therefore, the VME diversity could not be included as a 
layer in the Marxan exercise, which is an important limit, because the selected areas did not 
account for the most diverse areas where VME indicators are likely to persist. The only way 
to address this issue will be to selectively acquire more data on the distribution of VMEs in 
the SIOFA area, targeting specifically the most deficient areas visible in Ramiro-Sánchez & 
Leroy (2022) (report on VME occurrence data / completeness). Nonetheless, we encourage 
the inclusion of the predicted hotspots calculated using stacked-taxa distribution modelling 
in TOR3 (of the present project PAE2021-01) in future SCP assessments in SIOFA, provided 
that the uncertainty associated with the modelling methods is understood. 
 
Finally, it is important to remember that Marxan is a decision-support tool in spatial decision-
making process. That means that Marxan outputs should not be interpreted as final products 
but to guide managers towards areas important to protect. As evidenced above with the IPAs, 
these areas are biologically significant (there is evidence of a VME habitat) but were not 
selected in the reserve. Therefore, decisions made about where to designate areas will need 
to factor in all possible available information that is not integrated into a spatial layer, such 
as scientific expertise and traditional ecological knowledge about the environment in 
question, practical and political constraints, and human conflicts. This is why Marxan analyses 
are placed into consultations that involve different stakeholders. 
 
This investigation intended to highlight which details could be retained or dropped in future 
work carried out by SIOFA. Notably, the future agreement on ecological targets for individual 
features and the selection of conservation features. Thus, these Marxan outputs could be 
treated as a starting point for discussions about what to include in, but also what a draft 
network could look like. The human and ecological complexity involved in spatial planning 
makes planning iterative, with continuous feedback and guidance to shape and improve plans 
at each iteration. As such, it does not matter that a ”scenario” is not perfect (e.g., whether 
there are gaps in ecological data, missing costs, or whether the BLM setting could be other). 
Rather, these outputs could be used in a workshop with scientific experts and stakeholders 
to react against and come up with an improved network configuration, in a process of 
negotiations and trade-offs.  
 
 

6. Conclusions 

This analysis has explored the effects of cost on a hypothetical reserve network planning in 
the SIOFA area using three groups of conservation features and the decision-support tool 
Marxan. The integration of all fisheries did not result in a loss for the sector, as the fishing 
footprint was completely avoided by the planning software. Moreover, with the ecological 
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targets set, approximately only 4%, 7% and 10% of the overall area was set aside for 
protection in the low, medium, and high target cost scenarios, respectively. The key selected 
areas consistently selected across all three scenarios with cost included the northeast of 
Seychelles, SIOFA border at Del Caño Rise, an area of the SW Indian Ridge at the latitude of 
Walters Shoal, the northwest and east of Saint Paul and Amsterdam Islands (mid-Indian 
Ridge), south of Broken Ridge, Ninety East Ridge, and the Wallaby and Zenith Plateaus. Results 
should however be interpreted with caution and relative to the parameters and conservation 
features selected for the investigation. Indeed, this analysis focused on selected features 
(e.g., EBSAs) but could not consider local knowledge about specific areas of importance (that 
may not have been captured by EBSA), such as SIOFA’s existing interim protected areas. 
Hence, it should be regarded as a starting point for a process, not the end. Part of this process 
will entail detailed evaluation and consultation of the ecological targets and the working 
spatial resolution of the analysis, all placed in a consultation context.  
 
 
 

7. Recommendations 

We recommend the Scientific Committee to: 
• Note that the results of this investigation should be interpreted relative to the 

conservation features and ecological targets used for the analysis. 
• Note that “best solutions” are solutions within a larger set of other nearly as good 

solutions. 
• Note that not all available information for the area can be integrated into spatial 

layers due to large gaps in their spatial coverage. 
• Note that decisions made about where to designate areas will need to factor in all 

possible available information that is not integrated into a spatial layer, and in a 
wider consultation context. 

• Note that these results should serve as a starting to point to discuss what 
conservation features to include and what not to include. 
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Appendix A -Calibration of Marxan parameters 

Standard Marxan calibrations were conducted to identify optimal number of iterations, 
number of solutions, SPF and BLM values. We describe in the next sections the different steps. 
 

1. Number of iterations 
 
With increasing number of iterations, Marxan succeeds more consistently in locating a global 
optimum, or at least better local optima. However, solution time increases linearly with the 
number of iterations, such that there are practical limits on the number of iterations that can 
be considered reasonable. To calibrate the number of iterations, the SPF was set to 1, the 
BLM value set to 0, and the number of solutions to 100. The number of iterations was 
increased from 1 million to 110 million, by 5 million steps from 1 to 10 million, and then by 
10 million steps onwards. Trade-off curves comparing the average selected cost, score and 
boundary (out of 100 solutions) to the number of iterations was generated (Figure 1), 
resulting from cumulative distribution functions. After 30 million iterations, the cost, score, 
and area of the solutions differed only slightly, and 80 million has similar values to score and 
area than iterations higher than 30 million. It was then decided to use 30 million iterations to 
calibrate the SPF and BLM and use 80 million iterations to produce the final results. 
 
Calibration of the number of iterations was based on the medium target scenario and not 
repeated for scenarios low and high. This is because the three scenarios (low, medium, and 
high) contain the same socio-economic feature and number of planning units, which are the 
parameters most likely to impact the number of iterations and the effects on the solutions 
cost (Ardron et al., 2010). 
 
 

2. Number of runs 
 
It is common practice to set Marxan to run 100 times, i.e., to provide 100 solutions, for each 
scenario. Nevertheless, it is good practice to explore the effect of increasing the number of 
solutions to assess if the characteristic set of solutions obtained changes or remains the same 
(Ardron et al., 2010). In certain circumstances, it may be more practical to assess the number 
of solutions than the number of iterations (given the linear increase in computation time), 
since unfeasible solutions can always be discarded (Ardron et al., 2010).  
 
The number of runs, or number of solutions, was calibrated by increasing the number from 
100 to 500 by 50 runs steps, keeping the SPF at 1, BLM at 0, and the number of iterations at 
30 million. Again, this calibration was based on the medium target scenario. Figure 2 shows 
that the difference in the average cost of the solutions is minimal as we increase the number 
of solutions and the spatial distribution of the selection frequency remained the same, which 
indicated that 100 number of solutions were adequate to explore the solution space.  
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Figure 1. Calibration for the number of iterations for the medium target scenario resulting 
from averaging results of cumulative distribution functions (cdf) for cost, boundary, and 
score of solutions. Trade-off curves comparing mean cost (top row), mean boundary (middle 
row), and mean score (bottom row) against number of iterations. 
 



Systematic conservation planning in SIOFA 
 

 42  

 
 

Figure 2. Calibration for the number of runs for the medium target scenario. 
 
 
 

3. Boundary Length Modifier 
 
The BLM determines the compactness of the solutions generated by Marxan. A BLM of 0 leads 
to spatially fragmented solutions consisting of many planning units individually selected. In 
contrast, a higher BLM leads to solutions consisting of fewer and larger spatial solutions. An 
exploratory analysis (Table 1) revealed that five out of the 16 features did not meet their 
targets when a SPF was set equal to 1 for all features. Following Marxan Good Practice 
Handbook, it was decided to calibrate first the BLM and, if after selecting an appropriate level 
of compactness, features did not still meet targets, the SPF value would be increased for those 
specific features alone. 
 
 
 
Table 1. Summary statistics of baseline scenarios. Here “baseline” scenarios are those scenarios that 
did not go through the calibration process for BLM or SPF. In all scenarios the BLM is set to 0, and the 
SPF to 1. 

  BLM Score  Cost 
Nb. Of 
Pus 

Boundary 
Length Shortfall 

Nb. of 
missing 
features MPM 

Low 0 926.80 748.19 748 1356 1.9887E+11 5.79 0.63 
Medium 0 1664.18 1259.55 1260 1824 4.3697E+11 5 0.44 
High 0 2408.44 1859.94 1860 2372 5.9924E+11 5 0.55 
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3.1 Calibration of the low target scenario 
 

The following method was used to calibrate the BLM values for low-target scenario: 
 

1) The first calibration explored ten values for BLM ranging from 0 to 1000, using 100 
solutions and 30 million iterations, and SPF set to 1 for all conservation features. 
Specifically, we tested scenarios for BLM values set to 0.0, 0.001, 0.01, 0.1, 1.0, 10, 
100, and 1000.  

2) A second calibration was set to explore eight more BLM values ranging from 0 to 
10 to focus the search for an adequate BLM. We tested for 0, 0.001, 0.004, 0.005, 
0.006, 0.01, 0.05, 0.1, 1.0, and 10. 

3) Trade-off curves were constructed after each calibration to identify the effects of 
changing BLM values to the area selected and the boundary length. 

 
3.2 Calibration of the medium target scenario 

 
The following method was used to calibrate the BLM values for the medium-target scenario: 
 

1) The first calibration explored ten values for BLM ranging from 0 to 0.001, using 
100 solutions and 30 million iterations, and SPF set to 1 for all conservation 
features. Specifically, we tested scenarios for BLM values set to 0, 0.001, 0.01, 0.1, 
1.0, 10, 100, and 1000.  

2) A second calibration was set to explore nine more BLM values ranging from 0 to 
10 to focus the search for an adequate BLM. We tested for 0, 0.001, 0.005, 0.01, 
0.05, 0.1, 0.5, 1.0 and 10. 

3) Trade-off curves were constructed after each calibration to identify the effects of 
changing BLM values to the area selected and the boundary length. 

 
3.3 Calibration of the high target scenario 

 
The following method was used to calibrate the BLM values for high-target scenario: 
 

1) The first calibration explored 10 values for BLM ranging from 0 to 1000, using 100 
solutions and 30 million iterations, and SPF set to 1 for all conservation features. 
Specifically, we tested scenarios for BLM values set to 0.0, 0.001, 0.01, 0.1, 1.0, 10, 
100, and 1000.  

2) A second calibration was set to explore six more BLM values ranging from 0.01 to 
1 to focus the search for an adequate BLM. We tested for 0, 0.01, 0.05, 0.1, 0.5 
and 1.0. 

3) Trade-off curves were constructed after each calibration to identify the effects of 
changing BLM values to the area selected and the boundary length. 

 
Figure 3, Figure 4, and Figure 5 show the results of the BLM calibration for the low, medium, 
and high target scenarios, respectively. The three figures show the expected response: an 
increase of BLM values increases the average area selected in the solutions, whilst decreasing 
the mean boundary length of the solutions. As mentioned earlier, this creates a more compact 
but more costly network, that is, solutions consisting of fewer, but larger, clusters of planning 



Systematic conservation planning in SIOFA 
 

 44  

units. Following the common method for selecting BLMs (Steward and Possingham, 2005), 
we selected the BLM value along the inflection point in the curve as the optimal BLM value 
for each target scenario. We also demonstrate in Figure 6, Figure 7, and Figure 8 the effect of 
using different BLM values in the design of the network for each of the target scenarios, 
respectively.  
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Figure 3. BLM calibration for the low target scenario. Effects of varying BLM values on the average 
area selected (cost) and average boundary length of the areas selected over 100 solutions. Here we 
look for the steep areas on the graph where the boundary length is quickly reduced for a small increase 
in cost. If that value does not produce the desired level of clumping, shift to a higher BLM (knowing 
that this includes a trade-off in terms of cost). 
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Figure 4. BLM calibration for the medium target scenario. Effects of varying BLM values on the average 
area selected (cost) and average boundary length of the areas selected over 100 solutions. Here we 
look for the steep areas on the graph where the boundary length is quickly reduced for a small increase 
in cost. If that value does not produce the desired level of clumping, shift to a higher BLM (knowing 
that this includes a trade-off in terms of cost). 
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Figure 5. BLM calibration for the high target scenario. Effects of varying BLM values on the average 
area selected (cost) and average boundary length of the areas selected over 100 solutions. Here we 
look for the steep areas on the graph where the boundary length is quickly reduced for a small increase 
in cost. If that value does not produce the desired level of clumping, shift to a higher BLM (knowing 
that this includes a trade-off in terms of cost). 
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Figure 6. Effect of using different BLM values on the best solution calculated by Marxan for the low 
target scenario. The total amount of the selected area by the solution is presented.  



Systematic conservation planning in SIOFA 
 

 49  

 
Figure 7. Effect of using different BLM values on the best solution calculated by Marxan for the medium 
target scenario. The total amount of the selected area by the solution is presented.  
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Figure 8. Effect of using different BLM values on the best solution calculated by Marxan for the high 
target scenario. The total amount of the selected area by the solution is presented.  
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4. Species Penalty Factor 

An exploratory analysis (see Table 2) confirmed that on average one ecological feature at least 
did not meet its target when a SPF was set equal to 1 for all features at the selected level of 
compactness (BLM). It was then decided to calibrate the SPF with the application of a higher 
SPF for those specific features missing their targets.  

For the SPF calibration we used the function available at QMarxan Toolbox. We set the SPF 
values using a step size increase of 0.1 and a percentage target success of 99 %. To adjust SPF 
values, we used the “As group” method where all features whose targets are not met have 
their SPF values increased together and other features whose targets are met, have their SPF 
values unaltered (Qmarxan Toolbox). For comparison, SPF values were also calibrated (with a 
BLM equal 0) to explore what SPF values are needed to achieve targets. 
 
 
 
Table A2. Summary statistics (average) of baseline scenarios for 100 solutions with potential BLM 
values. Here “baseline” scenarios are those scenarios that did not go through the calibration process 
for SPF. In all scenarios the SPF was set to 1 and  iterations to 30 million. 

  BLM Score  Cost 

Nb. 
Of 

PUs 

Boundary 
Length 

Shortfall 

Nb. of  
missing 

features 

Minimum 
proportion 

met 

Low 0.001 928.44 859.79 860 1176 16.8353E+10 1.91 0.66 

 0.01 940.92 927.65 928 1181 1513074370 0.95 0.93 

 0.1 1056.57 941.45 941 1137 1112413420 0.91 0.93 
Medium 0.005 1674.92 1661.71 1662 1610 5053344030 0.98 0.93 

 0.01 1685.07 1666.95 1667 1642 1705979630 0.99 0.93 
  0.1 1860.24 1691.53 1691 1673 1099341783 0.63 0.95 
High 0.001 2411.97 2035.13 2035 2089 4.0275E+11 4 0.63 

 0.01 2434.47 2412.67 2413 2002 1748016110 0.98 0.94 
  0.1 2654.91 2447.03 2447 2066 965123979 0.33 0.98 

 
 
 
Differences in Marxan scores between the use of a consistent SPF of 1 for all features, and 
the application of a higher SPF for the features missing their targets, is described in Table 3. 
Analyses confirmed that more efficient solutions were obtained when using a customized SPF.  
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Table 3. Summary statistics of scenarios with a calibrated SPF for those features that did not meet 
targets.  

 BLM Score Cost 

Nb. 
Of 
Pus 

Boundary 
Length Shortfall 

Nb. of 
missing 
features 

Min. 
Proport
ion met 

Low 0.01 941.06 927.99 928 1187 11338198910 0.01 0.99 
Medium 0.005 1674.98 1662.45 1662 1602 4509657500 0 0.99 

0.01 1685.23 1667.57 1668 1645 1332639560 0 0.99 

0.1 1859.78 1691.3 1691 1674 895924990 0 0.99 

High 

0.001 2435.96 2430.13 2430 4379 1685654270 0.01 0.99 

0.01 2434.54 2413.36 2413 2002 1279665040 0 0.99 
 
 
 
 
 
 

Table 4. SPF values applied to each ecological feature for each of the three scenarios after selecting 
an adequate BLM (i.e., level of compactness) and still not meeting targets. 

 

Feature name 
Low  

(BLM=0.01) 
Medium 

(BLM=0.01) 
High 

(BLM=0.01) 

EBSA 1 1 1 

Seamnt 1 1 1 

Shelf 1 1 1 

Slope 1 1 1 

Canyon 1 1 1 

Plateau 1 1 1 

Rise 1 1 1 

Ridge 1 1 1 

bio_7 (bioregion 2.4) 1.4 1.3 1.1 

bio_6 (bioregion 2.1) 1 1 1 

bio_3 (bioregion 1.3) 1 1 1 

bio_4 (bioregion 1.5) 1 1 1 

bio_5 (bioregion 1.7) 1 1 1 

bio_2 (bioregion 1.2) 1 1 1 

bio_8 (bioregion 3.1) 1 1 1 

bio_1 (bioregion 1.1) 1 1 1 
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Appendix B– Calibration of Marxan parameters for scenarios with 
no cost 

Using the same calibration parameters as for the scenarios with cost (iterations = 30 million, 
and 100 runs), the SPF was calibrated for the low, medium, and high no cost scenarios. For 
this, we set the BLM to 0.  
 

1. Species Penalty Factor 

An exploratory analysis (see Table 1) confirmed that on average one ecological feature at least 
did not meet its target when a SPF was set equal to 1 for all features and BLM was set to 0. It 
was then decided to calibrate the SPF with the application of a higher SPF for those specific 
features missing their targets.  

For the SPF calibration we used the function available at QMarxan Toolbox. We set the SPF 
values using a step size increase of 0.1 and a percentage target success of 99 %. To adjust SPF 
values, we used the “As group” method where all features whose targets are not met have 
their SPF values increased together and other features whose targets are met, have their SPF 
values unaltered (QMarxan Toolbox) (Table 2).  
 
For comparison, SPF values were also calibrated after calibrating the BLM (i.e., level of 
compactness). The first calibration explored 10 values for BLM ranging from 0 to 1000, using 
100 solutions and 30 million iterations, and SPF set to 1 for all conservation features. 
Specifically, we tested scenarios for BLM values set to 0.0, 0.001, 0.01, 0.1, 1.0, 10, 100, and 
1000. The graphs suggested a BLM of 0.01 for all three, no cost scenarios (Figure 1, Figure 2, 
Figure 3). We then proceeded to calibrate the SPF values with that BLM (Table 3). 
 

Table 1. Summary statistics of baseline no cost scenarios. Here “baseline” scenarios are those scenarios 
that did not go through the calibration process SPF. In all scenarios the BLM is set to 0, and the SPF to 
1. 

  Score  Cost Nb. Of 
Pus Shortfall 

Nb. of 
missing 

features 

Minimum 
Proportion  

met 

Low, no cost 926.03 738.72 739 2.0801E+11 5.83 0.60 
Medium, no cost 1662.53 1275.69 1276 4.2308E+11 4.86 0.54 

High, no cost 2405.16 1822.38 1822 6.3823E+11 4.56 0.53 
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Table 2. SPF values applied to each ecological feature for each of the three no cost scenarios  and a 
BLM (i.e., level of compactness) set to 0 to meet targets. 

 

Feature name 
Low  

(BLM=0) 
Medium 
(BLM=0) 

High  
(BLM=0) 

EBSA 1 1 1 

Seamount 1 1 1 

Shelf 1 1 1 

Slope 1 1 1 

Canyon 1 1 1 

Plateau 1 1 1 

Rise 1 1 1 

Ridge 1 1 1 

bio_7 (bioregion 2.4) 1.6 1.3 1.2 

bio_6 (bioregion 2.1) 1.1 1.1 1.1 

bio_3 (bioregion 1.3) 1.1 1.1 1.1 

bio_4 (bioregion 1.5) 1.1 1.1 1.1 

bio_5 (bioregion 1.7) 1.1 1 1.1 

bio_2 (bioregion 1.2) 1.1 1.1 1.1 

bio_8 (bioregion 3.1) 1 1 1 

bio_1 (bioregion 1.1) 1 1 1 
 
 
 
 

 
Figure 1. BLM calibration for the low target no cost scenario. Effects of varying BLM values on the 
average area selected (cost) and average boundary length of the areas selected over 100 solutions. 
Here we look for the steep areas on the graph where the boundary length is quickly reduced for a small 
increase in cost. 
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Figure 2. BLM calibration for the medium target no cost scenario. Effects of varying BLM values on the 
average area selected (cost) and average boundary length of the areas selected over 100 solutions. 
Here we look for the steep areas on the graph where the boundary length is quickly reduced for a small 
increase in cost. 
 
 
 

 
Figure 3. BLM calibration for the high target no cost scenario. Effects of varying BLM values on the 
average area selected (cost) and average boundary length of the areas selected over 100 solutions. 
Here we look for the steep areas on the graph where the boundary length is quickly reduced for a small 
increase in cost. 
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Table 3. SPF values applied to each ecological feature for each of the three no cost scenarios after 
selecting an adequate BLM (i.e., level of compactness) and still not meeting targets. 

 

Feature name 
Low  

(BLM=0.01) 
Medium 

(BLM=0.01) 
High  

(BLM=0.01) 

EBSA 1 1 1 

Seamount 1 1 1 

Shelf 1 1 1 

Slope 1 1 1 

Canyon 1 1 1 

Plateau 1 1 1 

Rise 1 1 1 

Ridge 1 1 1 

bio_7 (bioregion 2.4) 1.7 1.4 1.1 

bio_6 (bioregion 2.1) 1 1 1 

bio_3 (bioregion 1.3) 1 1 1 

bio_4 (bioregion 1.5) 1 1 1 

bio_5 (bioregion 1.7) 1 1 1 

bio_2 (bioregion 1.2) 1 1 1 

bio_8 (bioregion 3.1) 1 1 1 

bio_1 (bioregion 1.1) 1 1 1 
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Executive summary 

Species richness is a widely used measure for biodiversity. Ideally, we would have 
representative sampling across taxonomic groups to calculate species richness; however, this 
information often has a limited spatial and temporal coverage. To overcome this limitation, 
biodiversity models, i.e., models that aim to predict species diversity (richness) and 
composition can be used. 
 
There are two approaches to model species richness: stacking of individual species 
predictions and direct modelling of species numbers. The first approach, referred to as 
stacked species distribution modelling (S-SDMs) consists of first predicting the distribution of 
each species independently using species distribution models and then stacking them to 
provide species richness and assemblage composition. The second approach, referred to as 
macroecological modelling (MEM), statistically relates the number of species in a geographic 
unit to environmental variables that characterize the same unit. S-SDMs rely in our ability to 
model the distributions of individual species, wherein species with too little data (i.e., number 
of records) are usually excluded from further analysis for statistical reasons. MEMs, on the 
other hand, make use of all available data across all species, regardless of the number of 
records per species, which may help in modelling rare species. 
 
In this study, we investigated the use of both approaches for predicting richness of VME 
indicators in the Southern Indian Ocean, and their use in highlighting potential biodiversity 
hotspots. For S-SDMs, we stacked individual habitat suitability predictions of VME indicators 
produced in previous work for SIOFA (project PAE2020-02) and applied three increasing 
thresholds to highlight the most diverse areas (i.e., areas with the top 2.5%, top 5% and top 
10% taxa richness). For MEM, we attempted to model the observed richness of the area, 
accounting for sampling bias. 
 
The S-SDMs highlighted Walters Shoal and the Mascarene Plateau as the areas with the 
highest index of richness. The application of the hotspot threshold highlighted the same 
areas, with a progressive emergence of the ocean ridges with a less conservative definition. 
In an extreme case of missing data and sampling bias, the MEM model failed to predict the 
observed richness, which prevents its current use.  
 
Whilst the S-SDMs performed well in predicting richness in the area, it is based only on taxa 
that could be modelled (i.e., taxa that had a sufficient number of occurrences), thereby 
remaining incomplete in coverage because it does not include rare taxa. However, the index 
could be further used in the application of the definition of hotspot to highlight areas of 
greater biodiversity in SIOFA. Such information can be further utilised for conservation 
planning, for example.  
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1. Purpose of the report 

This report aims to address Terms of Reference 3 “Investigate and advise on the use of habitat 
suitability modelling in predicting benthic species diversity and distribution in the SIOFA 
management area, including assessing data availability for such modelling” of project 
PAE2021-01 (“Bioregionalization and Management of Vulnerable Marine Ecosystems 
(VMEs)”). 
 

2. Introduction 

 
International obligations require the implementation of conservation measures for the 
management of deep-sea bottom fisheries, due to the potential impacts they may have on 
seafloor biodiversity, especially on vulnerable marine ecosystems (VMEs) (UNGA, 2007). As a 
basis to inform conservation measures for the protection of VMEs, prioritisation of areas can 
help in meeting conservation targets set to protect biodiversity (Margules & Pressey, 2000). 
One way to highlight important areas is to use species richness, a simple but an important 
widely used measure for biodiversity, which has also been identified as one of the Essential 
Biodiversity Variables (EBVs; Pereira et al., 2013). Therefore, investigating the distributional 
patterns of richness of VME indicators in the SIOFA area can also help in the prioritisation of 
sites for conservation. 
 
Species richness is the number of taxa occurring in a defined geographic area. Ideally, we 
would have representative sampling across taxonomic groups to calculate species richness; 
however, this information often has a limited spatial and temporal coverage (Meyer et al., 
2015). To overcome this limitation, biodiversity models, i.e., models that aim to predict 
species diversity (richness) and composition can be used, which can help to establish 
conservation strategies or to predict future patterns of biodiversity under global change 
(Ferrier & Guisan, 2006; Guisan & Rahbek, 2011).  
 
There are two approaches to model species richness: stacking of individual species 
predictions and direct modelling of species numbers (Ferrier & Guisan, 2006). The first 
approach, referred to as stacked species distribution modelling (S-SDMs, Guisan & Rahbek, 
2011), consists of first predicting the distribution of each species independently using species 
distribution models (SDM; Guisan & Thuiller, 2005) and then stacking them to predict species 
assemblages, providing species richness and assemblage composition. SDMs are correlative 
models that relate species occurrences to a set of environmental variables (Guisan & 
Zimmermann, 2000). In S-SDMs, assemblages will theoretically be composed of species with 
partially the same environmental requirements (Guisan & Rahbek, 2011). Although S-SDMs 
have been criticised for overpredicting richness in the past (Guisan & Rahbek, 2011), it has 
been shown to be related to thresholding individual SDMs to binary outputs prior to stacking 
(Calabrese et al., 2014). Instead, the preferred approach of stacking requires only the 
summation of per-site suitabilities from individual SDMs, which yields similar performance to 
macroecological models (Calabrese et al., 2014), especially when predicting current climate 
scenarios (Biber et al., 2020).  
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The second approach, referred to as macroecological modelling (MEM), statistically relates 
the number of species in a geographic unit to environmental variables that characterize the 
same unit (Gotelli et al., 2009). In the MEM, the number of species found in a geographic unit 
is expected to depend on available energy, environmental heterogeneity, disturbance, or 
history, with scale effects and some level of stochasticity (Gotelli et al., 2009). 
 
Currently, the two approaches can be used separately to make the same prediction, although 
there are methodological and theoretical differences between the two approaches. S-SDMs 
rely in our ability to model the distributions of individual species. In this case, species with too 
little data (i.e., number of records) are usually excluded from further analysis for statistical 
reasons. With S-SDM we have information on the identity of species occurring at a given 
location. MEMs, on the other hand, make use of all available data across all species, regardless 
of the number of records per species, which may help in modelling rare species. However, 
MEMs do not provide information on the identity of species occurring at a given site. Despite 
these differences, both approaches can use a similar set of environmental predictors but with 
different underlying theoretical hypotheses. For instance, in S-SDMs, species ranges are 
constrained by environmental factors, while in MEM environmental factors limit the number 
of species that coexist in an area (Guisan & Rahbek, 2011). Thus, comparing the two 
approaches provides insights into our ability to predict patterns by analysing convergences 
and divergences between them. 
 
In this study, we explored the use of both approaches for predicting diversity of VME 
indicators in the Southern Indian Ocean. The present study builds on previous work 
developing predictive bioregionalization schemes based on VME indicator taxa in the SIOFA 
area (Ramiro-Sánchez & Leroy, 2022). The three schemes addressed three methodological 
approaches: “group first, then predict”, “predict first, then group”, and “analyse 
simultaneously” (Woolley et al., 2020). For the exploration of S-SDMs, we made use of habitat 
suitability predictions developed during the “predict first, then group” approach, and explore 
the application of hotspot definition to identify areas of greater biodiversity within SIOFA. For 
the exploration of the MEM, we used the same biodiversity dataset collated for the 
bioregionalization work. We present the results and discuss the limitations from both 
approaches. 
 
 

3. Methods 

In the next section we introduce the biodiversity inventory serving as the basis for both 
approaches, an overview of the S-SDM, including an overview of the methods followed for 
the development of habitat suitability models, and the methods for the MEM development.  
 
Biological inventory 
 
The VME indicators list adopted by SIOFA (CMM 2018/01) at order, class, and phylum levels, 
includes the following categories of deep-sea (generally >200 m) benthic taxa: Cnidaria 
(Gorgonacea, Anthoathecatae, Stylasteridae, Scleractinia, Antipatharia, Zoantharia, 
Actiniaria, Alcyonacea, Pennatulacea), Porifera (Hexctanilleda, Demospongiae), Ascidiacea, 
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Bryozoa, Brachiopoda, Pterobranchia, Serpulidae, Xenophyophora, Bathylasmatidae, 
Crinoidea (stalked species only), Euryalida, Cidaroida. We downloaded all occurrence records 
under these categories from the public databases the Ocean Biodiversity Information System 
(OBIS, https://obis.org/) (accessed on 10/11/2020 and 02/04/2021), the Global Biodiversity 
Information Facility (GBIF; https://www.gbif.org/) (accessed on 09/11/2020 and 14/04/2021; 
the full list of GBIF occurrence downloads is provided in Appendix A), NOAA’s Deep-sea Corals 
Data Portal (https://deepseacoraldata.noaa.gov/) (accessed on 16/11/2020 and 09/04/2021), 
and Smithsonian Natural History Museum (https://collections.nmnh.si.edu/) (accessed on 
16/11/2020). We also obtained occurrence records from SIOFA’s observer programme, and 
research campaigns led by the Muséum National d’Histoire Naturelle. We obtained records 
for the whole Southern Indian Ocean to account for ecological continuity, that is, SIOFA’s 
management area and all exclusive economic zones bordering it (latitudes 13°N – 65°S and 
longitudes 20°E – 147°E). 
 
We applied verification procedures for taxonomic consistency, error detection, as well as 
evaluation of records in the environmental space. Specifically, we first checked species names 
against the most updated authority, the World Register of Marine Species (WoRMS, 2021) for 
synonyms and fossil records. Secondly, we applied automatic error and outlier detection using 
the function clean-coordinates from the R package CoordinateCleaner version 2.0-18 (Zizka 
et al., 2019). We tested for equal coordinates, coordinates over land using the Natural Earth 
data ocean shapefile version 4.1.0 (www.naturalearthdata.com, accessed November 2020), 
and zero coordinates. Finally, we used the catalogue number and geographical coordinates 
to filter out potential duplicates across GBIF and OBIS. 
 
Our download strategy incorporated numerous shallow water species in the dataset, 
particularly zooxanthellate corals (i.e., corals with photosynthetic algae) – however, only 
deep-sea species fall under the definition of VME indicator taxa. Although very few 
zooxanthellate corals occur below 50 m (Cairns, 2007), using the typical definition of deep sea 
as waters below 200 m would exclude deep-water species that expand into shallower depths. 
Consequently, we aimed to integrate the ecology of taxa and the general definition of deep 
sea by applying several filters to exclude zooxanthellate corals and other strictly shallow-
water taxa. First, we individually assessed the depth distribution of each species, and we kept 
a species if 90% of its records were below 200 m water depth. To assess the depth range of 
records, we relied on their original recorded depth as indicated in the sample record. In the 
cases where this information was not available, we used the General Bathymetric Chart of 
the Oceans (GEBCO, 2021) to assign depths. Second, we further filtered species known to be 
shallow water as we worked through with peer-reviewed deep-sea taxa lists (Cairns, 2017; 
Kocsis et al., 2018). Our filtered dataset of deep-sea VME indicator taxa comprised 1,991 
species (of which 1,312 had an observation date). The list can be found in Ramiro-Sánchez & 
Leroy (2022). 
 

3.1 Stacked-Taxa Distribution Models 
 
Habitat suitability predictions of species form the basis of Stacked-Species Distribution 
Models (S-SDMs). During SIOFA’s project PAE2020-02, habitat suitability models were built 
for VME indicators at family, genus, and species level (Ramiro-Sánchez & Leroy, 2022). These 
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models formed the basis for a subsequent bioregionalization using network analysis, 
following the approach known as “predict first, then group” (Ferrier & Guisan, 2006). For 
consistency we provide an overview of the habitat suitability modelling step, although for a 
full description of the methods we refer the reader to Ramiro-Sánchez & Leroy (2022). 
 
All taxa (species, genus, family) with more than five records were modelled with down-
sampled presence-only random forests, using a set of 50,000 randomly sampled background 
points. We chose down-sampled random forests because these techniques are one of the 
best performing techniques for presence-only distribution models, especially in situations 
with low occurrence numbers (i.e., between 5 and 30 – see Valavi, Elith, et al., 2021; Valavi, 
Guillera-Arroita, et al., 2021). In addition, random forests are relatively fast single models, 
which is an important aspect here given the large number of taxa to model. Because most 
VME indicator taxa had only a limited number of occurrences, we adapted our modelling 
process depending on the number of occurrences, with a decreasingly complex procedure 
(Ramiro-Sánchez & Leroy, 2022). 
 
As discussed in Ramiro-Sánchez & Leroy (2022), the resulting predicted distributions were 
likely overpredicted given that the environmental niche was not well characterised. In 
particular, we observed that our modelling at species and genus level was less precise than at 
family level, because there were less data for species and genus than for family; thus, large 
areas were predicted at the species and genus level that were not predicted at family level. 
As a result, we estimated that the genus-level was the best compromise between a fine 
taxonomic resolution and a reduced (albeit still very present) overprediction of ranges due to 
the lack of data. Based on this rationale, for the present study we chose to work at the genus 
and family taxonomic level, therefore collating the individual habitat suitability models at 
genus (429 genera, list name is provided in Table B1 of Appendix B) and family (210 families, 
list name is provided in Table B2 of Appendix B) levels.  
 
In order to proceed with the stacking, for each taxonomic level we calculated an index of 
richness with the cumulative sum of suitability scores per grid cell, which we refer hereafter 
as stacked-taxa distribution models (S-TDMs). Finally, to identify hotspots, we first spatially 
restricted the index of richness to only encompass the SIOFA area and then used threshold 
quantiles to represent the highest proportion of biodiversity in the area. Specifically, we 
calculated the top 10%, 5% and 2.5% quantiles for the index of richness. 
 

3.2 Macroecological Models 
 
Biological data 
Occurrence data comprised 755 genera for inclusion in the macro-ecological model.  
 
Environmental data 
We selected environmental variables from the World Ocean Atlas Data (WOA 2018) available 
at 1° spatial resolution: apparent oxygen utilization, percentage of oxygen, density, nitrate, 
phosphate, silicate, salinity, temperature. We included mean net primary production (g C 
m−2year−1, NPP) generated from a vertically generalized production model (VGPM) across the 
years 2003 to 2010 (http://www.science.oregonstate.edu/ocean.productivity/). NPP is a 
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function of satellite-derived chlorophyll (SeaWiFS and Modis). We also included the latest 
compilation for sediment thickness data (GlobSed , Straume et al., 2019) as a further 
determining variable, as sedimentation is a crucial indicator for ecosystem types and 
biodiversity (e.g., Snelgrove, 1999; Zeppilli et al., 2016). Finally, we used the global 
bathymetric model GEBCO2020 originally available at a spatial resolution of 0.004° and 
aggregated it to 1° resolution using the maximum value from surrounding cells.  
 
We checked for multicollinearity in the environmental variables using Spearman rank 
correlation. Strongly correlated variables (|ρ|>0.7) were removed from analyses to avoid 
issues with co-linearity of model coefficients (Figure A1) (Dormann et al., 2013). For tied 
variables, we selected the variable the most biologically meaningful for VME indicator taxa. 
Our final set of variables was composed of seven variables: mean salinity, dissolved oxygen, 
sediment thickness at seafloor, minimum depth, and mean net primary production at surface.  
 
We aimed to account for the source of variation in the data collection. We estimated sampling 
bias for each grid cell using a target-group approach, as it has been shown to perform the best 
at emulating sampling effort (Barber et al., 2022). Specifically, we used all records of VMEs 
indicators in our dataset (at any taxonomic level) and used a 2D kernel density estimation to 
convert single points into a continuous probability surface (see Barber et al. (2022) for 
methods and code). 
 
Statistical analysis 
Following preliminary analyses, we modelled diversity of genera by using three algorithms: 
generalised linear mixed model, generalised additive mixed model, and random forest. We 
fitted the generalised linear mixed model with a negative binomial distribution and log link 
function, with the MASS R package (Venables & Ripley, 2002). We fitted linear, and second-
order polynomial functions for each predictor variable given that a number of studies have 
emphasized the importance of unimodal relationships with temperature (Witman et al., 
2004) and POC flux (Tittensor et al., 2010). The generalised additive mixed model was fit with 
a negative binomial distribution, random effects (individual grid cells), and a maximum of 4 
knots per predictor variable, with the mgcv R package (Wood, 2011). Finally, the random 
forest model was fit with 1000 trees, with the randomforest R package (Liaw & Wiener, 2002). 
The three models included the estimated sampling effort for each grid cell as an offset. 
 
We calibrated the models with the non-collinear environmental variables and evaluated them 
with a 4-fold cross-validation procedure, computing the residual mean square error (RMSE) 
between the predicted and observed richness. Models with a small RMSE were selected for 
inclusion in an ensemble model. For the ensemble model, we selected the median of the 
models. We rescaled the ensemble prediction from 0 to 100 to obtain a diversity index, in a 
further attempt to correct for the notorious undersampling in the area and the low trust in 
absolute numbers. 
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4. Results 

4.1 Stacked-Species Distribution Models 
 
At genus level, the index based on cumulative probabilities of occurrence suggested high 
richness across the coasts and shallower depths of the Southern Indian Ocean (Figure 1). 
Specifically, within SIOFA, the areas predicted with highest index of richness were Saya de 
Malha, the bathyal depth zone of the Southwestern Indian Ridge and Broken Ridge, 
Mozambique Ridge and Walter’s Shoal. The quantiles showing the highest proportion of 
biodiversity at increasing levels of conservation, showed the same patterns but within a more 
constrained area and with a progressive emergence of the ocean ridges with less conservative 
thresholds (Figure 2). The top 10% starting at an index of richness of 52, the top 5% at 69 and 
the top 2.5% at 89 (Table A1). 
 
At family level, the index of richness (Figure 3) and hotspots of biodiversity (Figure 4) showed 
similar trends to those at genus level . The starting index values of richness were 28 for the 
top10%, 38 for the top 5%, and 49 for the top 2.5% (Table A1). 
 
 

 
Figure 1. Index of richness at genus taxonomic level. The map shows the cumulative sum of 
occurrence probabilities per grid cell (resolution at 0.08333° latitude-longitude) based on 
habitat suitability models for genera of VME indicators. 
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Figure 2. Index of richness at family taxonomic level. The map shows the cumulative sum of 
occurrence probabilities per grid cell (resolution at 0.08333° latitude-longitude) based on 
habitat suitability models for families of VME indicators. 
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Figure 3. Biodiversity hotspots based on stacked-species distribution models of genera of VME 
indicators. The panels show an index of richness (sum of stacked suitability values in a cell) defining 
hotspot as grid cells with values in the top 2.5%, top 5% and top 10% richness (from more to less 
conservative). Note the progressive emergence of the ocean ridges with less restrictive biodiversity 
thresholds. 
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Figure 4. Biodiversity hotspots based on stacked-species distribution models of families of VME 
indicators. The panels show an index of richness (sum of stacked suitability values in a cell) defining 
hotspot as grid cells with values in the top 2.5%, top 5% and top 10% richness (from more to less 
conservative). Note the progressive emergence of the ocean ridges with less restrictive biodiversity 
thresholds. 
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4.2 Macroecological Models 
 
We included in the calibration of the full model oxygen, salinity, mean net primary production, 
global sediment layer and maximum depth as predictor variables. We excluded undersampled 
cells, i.e., cells that had strictly less than three genera sampled. Model check of the posterior 
predictive probabilities for the generalised linear mixed model and the generalised additive 
mixed model indicated that the models were not adequate to predict richness at low numbers 
when compared with the observed data. Furthermore, model assumptions were not met: 
there was under and over dispersion in data and great heterogeneity of variance in the 
residuals. The generalised linear model explained only 25% of the deviance at the genus level, 
also suggesting an inadequate model fit.  
 
The ensemble model included nine models in total (three per algorithm). Although we cannot 
trust the ensemble model as individual model assumptions were not met, we present the 
model results for consistency (Figure 5). In terms of spatial patterns, the highest prediction of 
species richness was in the Saya de Malha, northwest of Madagascar and Chagos Laccadive 
Ridge. The bathyal depth zone (300 – 3500 m) showed the next strongest trends. In particular, 
this corresponded with the topographic complex areas of the Southwestern Indian Ridge, 
Broken Ridge and the Kerguelen Plateau. The ocean basins showed higher predicted 
biodiversity than the S-TDM predictions.  
 
 

 
Figure 5. Macroecological model predicting genera richness in the Southern Indian Ocean 
based on observed richness of VME indicator genera.



5. Discussion 

This work aimed to investigate and advise on the use of habitat suitability modelling in 
predicting benthic species diversity and distribution in SIOFA’s management area. Here, we 
aimed to compare two approaches used for the prediction of diversity: stacked-taxa 
distribution models (S-TDMs) and macroecological models (MEMs). S-TDMs predictions 
performed well in predicting richness, although these models do not include rare taxa. In 
contrast, MEMs models failed to predict richness: VME indicator data shortfalls do not allow 
for direct modelling of observed richness. Yet, in terms of spatial patterns, the two 
approaches highlighted similar areas where more biodiversity is expected; however, we could 
not compare both indices of diversity in terms of absolute numbers. More complex methods 
estimating richness based on an expected sampling coverage might be useful to predict 
richness but will still necessitate of the inclusion of additional benthic data. 
 
The S-TDMs performed well in predicting richness in the SIOFA area. The index of diversity 
was based on models that were statistically robust and that captured the areas where taxa 
occurred, even if these models showed overprediction in some areas (see Ramiro-Sánchez & 
Leroy, 2022 for an in-depth explanation of the models’ results). The index could be used as a 
basis to apply the definition of hotspot to highlight areas of greater biodiversity in SIOFA. Such 
information can be further considered in conservation planning, for example. However, a 
disadvantage of the S-TDM approach is that it is based only on taxa that could be modelled, 
i.e., taxa that had a sufficient number of occurrences. The index therefore remains incomplete 
in coverage because it does not include rare taxa. In contrast, the MEM model failed to predict 
the observed richness in the area: the models did not meet model assumptions in an extreme 
case of missing data, which prevents their implementation. Complimentary to the S-TDM 
approach in that it includes rare taxa, the development of the MEM approach will require the 
acquisition of additional data. 
 
In terms of spatial patterns, the two modelling approaches highlighted the mid-ocean ridges 
and plateaus as areas of higher diversity and, particularly within SIOFA, Saya de Malha, 
Walter’s Shoal and Broken Ridge. Effectively, it is the bathyal depths that were predicted with 
more diversity. Although this is consistent with the radiation hypothesis (Holt, 1985) that 
predicts that deep-water diversity is maintained by immigration from bathyal sources (Rex et 
al., 2005), the insufficient samples prevent us from drawing strong conclusions to 
differentiate across bathyal geographic zones that potentially could vary in diversity. As a 
result, the S-TDM index of richness could be preliminary used in qualitative terms to highlight 
areas of lower, medium, or higher expected diversity. However, other studies predicting 
global benthic diversity show similar spatial patterns of diversity in the Indian Ocean. For 
ophiuroids, Saya de Malha and Chagos-Laccadive Ridge are also areas of high diversity at 
depths shallower than 2000 m, whereas at the same depths at higher latitudes the diversity 
decreases (Woolley et al., 2016). In contrast, at depths greater than 2000 m, diversity is 
predicted similarly, but it is enhanced in the western Indian Ocean, specifically in the 
Southwestern Indian Ridge, the Mozambique and the Agulhas Plateau (Woolley et al., 2016).  
 
The low number of samples, the prevailing sampling bias, and high variability among sampled 
grid cells (regardless of the spatial resolution used) had consequences for the present study 
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investigating biodiversity models. Project PAE2020-02 (“VME Bioregionalization”) assessed 
data availability by estimating the completeness of the biodiversity inventory collated for the 
project (Ramiro-Sánchez & Leroy, 2022) and used in this study. The completeness index of the 
gathered distributional database, that is, the ratio between observed richness and estimated 
richness, indicated that 72% of the species known to occur in the area had been included in 
the inventory. However, this estimated richness constitutes an upper-bound estimate only 
(Chao et al., 2020) because of the data paucity in the SIOFA area – therefore, the true 
completeness is most certainly much lower than the measured completeness. Indeed, the 
spatial distribution of the completeness index suggested that the SIOFA area is critically 
under-sampled: few sites had a high completeness, which corresponded with areas of higher 
observed species richness and sampling intensity in coastal areas and therefore outside of 
SIOFA’s management area. In other words, the sampling is currently too inadequate to 
properly model richness in the area, which explains the failure of macroecological richness 
models. More complex modelling approaches are also unlikely to solve the evident data 
shortfalls of the Southern Indian Ocean and, more specifically, in the SIOFA area. 
 
 
 

6. Conclusions 

• There is insufficient data to predict the observed richness of VME indicator taxa in 
SIOFA. 

• Because of the low number of samples, sampling bias and high variability among 
sampled grid cells, we can only make inferences about spatial patterns of diversity 
rather than considering absolute numbers. 

• We recommend only the consideration of the S-TDMs models to further analyse 
potential patterns.  

• The application of the definition of hotspot (i.e., areas with top 5%, or top 10% of 
biodiversity) to the S-TDM index of richness might help in the evaluation of important 
areas for biodiversity, such as including that information in a systematic conservation 
planning. 
 

7.  Recommendations 

We recommend the Scientific Committee to: 
• Note to consider the report and work carried out for this Terms of Reference. 
• Note to consider only the biodiversity model based on S-TDM. 
• Note to consider the application of the definition of hotspot to the S-TDM index of 

richness to use in future conservation planning. 
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Appendix A  

List of all GBIF occurrence data downloads used for analysis. 
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GBIF.org (14 April 2021) GBIF Occurrence Download  https://doi.org/10.15468/dl.tpkv6f  
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GBIF.org (14 April 2021) GBIF Occurrence Download  https://doi.org/10.15468/dl.ujfmwm 
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GBIF.org (09 November 2020) GBIF Occurrence Download  https://doi.org/10.15468/dl.zesz8a 
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Appendix B 

 
Figure B1. Spearman correlation plot between pairs of environmental variables selected for inclusion 
in the analysis of the macroecological model. 
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Table B1. List of families included in the Stacked-Taxa Distribution Model. 
Acanthogorgiidae Crambeidae Isodictyidae Romancheinidae 

Acarnidae Cribrilinidae Isselicrinidae Rossellidae 
Actinernidae Crisiidae Kophobelemnidae Schizopathidae 

Actiniidae Ctenocidaridae Kraussinidae Scleractinia.incertae.sedis 
Adeonidae Cupuladriidae Lacernidae Scleritodermidae 

Agariciidae Dallinidae Latrunculiidae Scleroptilidae 
Agelasidae Darwinellidae Leiopathidae Scopalinidae 

Agneziidae Deltocyathidae Leiosalpingidae Serpulidae 
Alcyoniidae Dendrophylliidae Lepraliellidae Siderastreidae 

Amphianthidae Desmacellidae Leptastreidae Siphonicytaridae 
Ancorinidae Diazonidae Lichenoporidae Smittinidae 
Antedonidae Dictyodendrillidae Liponematidae Solanderiidae 

Anthemiphylliidae Dictyonellidae Lobophylliidae Sphenopidae 
Anthothelidae Didemnidae Mariametridae Spirastrellidae 

Antipathidae Diploastreidae Megathyrididae Stannomidae 
Aphrocallistidae Discinidae Membraniporidae Steginoporellidae 

Arachnopusiidae Dyscoliidae Micrabaciidae Stelligeridae 
Asterometridae Dysideidae Microporellidae Stenocyathidae 

Asteronychidae Echinoptilidae Microporidae Styelidae 
Astrocoeniidae Electridae Milleporidae Stylasteridae 

Aulocalycidae Ellisellidae Molgulidae Stylocordylidae 
Basiliolidae Epizoanthidae Monorhaphididae Suberitidae 
Bathylasmatidae Escharinidae Mycalidae Tedaniidae 

Beaniidae Esperiopsidae Myriopathidae Terebratellidae 
Bifaxariidae Eudendriidae Myxillidae Terebratulidae 

Bitectiporidae Euphylliidae Niphatidae Terviidae 
Bubaridae Euplectellidae Octacnemidae Tessaradomidae 

Bugulidae Euretidae Oculinidae Tethyidae 
Calescharidae Euryalidae Order_Cheilostomatida Tetillidae 

Callyspongiidae Exochellidae Pachastrellidae Thalamoporellidae 
Calwelliidae Farciminariidae Paragorgiidae Thalassianthidae 

Cancellothyrididae Farreidae Parazoanthidae Thalassometridae 
Candidae Fenestrulinidae Pennatulidae Theneidae 

Caryophylliidae Flabellidae Pentametrocrinidae Theonellidae 
Catenicellidae Flustridae Perophoridae Thoosidae 
Cellariidae Foveolariidae Petrosiidae Timeidae 

Celleporidae Fungiacyathidae Pheronematidae Tubiporidae 
Chalinidae Fungiidae Phloeodictyidae Turbinoliidae 

Chaperiidae Funiculinidae Phymaraphiniidae Umbellulidae 
Chlidonophoridae Geodiidae Platidiidae Verticillitidae 

Chondrillidae Gorgonocephalidae Plerogyridae Vesiculariidae 
Chondrosiidae Guyniidae Plesiastreidae Virgulariidae 



Biodiversity models based on VME indicator taxa in the SIOFA area 
 

 
21 

Chrysogorgiidae Halichondriidae Plexauridae Vulcanellidae 

Chunellidae Halisarcidae Pocilloporidae Xeniidae 
Cidaridae Heliodomidae Podospongiidae Zancleidae 

Cladopathidae Hemithirididae Polymastiidae   
Cladorhizidae Himerometridae Primnoidae   

Clavulariidae Hippothoidae Protopolyclinidae   
Cleidochasmatidae Histocidaridae Psammettidae   

Coelogorgiidae Hormathiidae Psamminidae   
Coelosphaeridae Hyalonematidae Psammocoridae   
Colobometridae Hymedesmiidae Pyuridae   

Conescharellinidae Ianthellidae Quadricellariidae   
Corellidae Irciniidae Rhizangiidae   

Coscinaraeidae Isididae Rhizocrinidae   
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Table A2. List of genera included in the Stacked-Taxa Distribution Model. 
Aaptos Crisia Ichthyaria Polymastia 
Abyssascidia Crotalometra Inflatella Polyphyllia 
Abyssopathes Crypthelia Iophon Polysyncraton 
Acanthastrea Cryptodendrum Ircinia Porites 
Acanthella Ctenactis Isodictya Pourtalopsammia 
Acanthocidaris Ctenella Isopora Premocyathus 
Acanthogorgia Ctenocella Isozoanthus Primnoisis 
Actinernus Ctenocidaris Jaffaia Proagnesia 
Adagnesia Culicia Jaspis Promachocrinus 
Adeona Cyamon Javania Protosuberites 
Adeonella Cyathotrochus Junceella Psammetta 
Aerothyris Cycloseris Kaliapsis Psammochela 
Agelas Cynarina Kinetoskias Psammocinia 
Alcyonium Dactylostega Kraussina Psammocora 
Alertigorgia Damiria Labioporella Pseudodiazona 
Amastigia Danafungia Labyrinthocyathus Pseudosiderastrea 
Amorphinopsis Darwinella Lamellodysidea Pseudosuberites 
Amphilectus Decametra Latrunculia Pteroeides 
Amphimedon Deltocyathoides Leiopathes Raspailia 
Amphimetra Deltocyathus Leiosalpinx Regadrella 
Anacropora Democrinus Lepidopora Retiflustra 
Annella Dendrilla Leptastrea Rhodelinda 
Anomastraea Dendrophyllia Leptopsammia Rhombopsammia 
Anomocora Dercitus Leptoria Rhopalaea 
Antarctotetilla Desmophyllum Leptoseris Rhynchocidaris 
Anthemiphyllia Dichrometra Letepsammia Rhynchozoon 
Antho Diploastrea Liosina Rossella 
Antipathes Diplonotos Liothyrella Sandalolitha 
Aphrocallistes Discodermia Liponema Saracrinus 
Arachnopusia Discoporella Lissodendoryx Sarcophyton 
Argyrotheca Disporella Lithoplocamia Scapophyllia 
Artemisina Distichopora Litophyton Scleranthelia 
Asajirus Ditrupa Lobactis Scleroptilum 
Ascidia Domosclerus Lobophyllia Scuticella 
Asteronyx Dyscolia Lobophytum Scytalium 
Asteroporpa Dysidea Lophelia Semperella 
Asteropus Echinophyllia Lophophysema Seriatopora 
Astrea Echinopora Madracis Seriocarpa 
Astreopora Echinoptilum Madrepora Serpula 
Astroceras Ecionemia Magellania Setosellina 
Astrodia Ecteinascidia Malakosaria Siderastrea 
Astromuricea Ectyonopsis Megaciella Sigmosceptrella 
Astrosierra Eguchipsammia Megerlia Sinularia 
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Astrothorax Electra Megerlina Sinuorota 
Astrotoma Eleutherobia Menipea Siphonicytara 
Atriolum Ellisella Merulina Siphonodictyon 
Auletta Emballotheca Metacrinus Smitticellaria 
Aulocyathus Enallopsammia Metavermilia Smittina 
Aulospongus Endectyon Micromussa Smittoidea 
Axinyssa Endopachys Micropora Solanderia 
Balanophyllia Epizoanthus Millepora Solenosmilia 
Basiliola Errina Molgula Sphenotrochus 
Bathylasma Erylus Molguloides Spirastrella 
Bathynanus Escharella Monanchora Spirobranchus 
Bathypathes Escharoides Monorhaphis Spongionella 
Bathystyeloides Eucalathis Muricella Stannophyllum 
Bathytelesto Eucidaris Mycale Steginocellaria 
Beania Eudendrium Mycedium Steginoporella 
Bernardpora Euginoma Myxilla Stelletta 
Bicrisia Eupaxia Narella Stellitethya 
Bifaxaria Euphyllia Nellia Stenocyathus 
Biflustra Euplectella Neopetrosia Stephanocyathus 
Blastomussa Eurypon Niphates Stephanophyllia 
Bolocera Farrea Notocoryne Stereocidaris 
Bubaris Fenestrulina Notoplites Sthenocephalus 
Bugula Figularia Oceanapia Stichopathes 
Caberea Fimbriaphyllia Octacnemus Styela 
Caleschara Flabellum Ogivalia Stylaraea 
Callogorgia Flustramorpha Oligotrema Stylaster 
Callyspongia Formosocellaria Ophiocreas Stylissa 
Calyx Foveolaria Osthimosia Stylobates 
Camptoplites Fungia Oulophyllia Stylocidaris 
Cancellothyris Fungiacyathus Oxypora Stylocoeniella 
Cantharellus Funiculina Pachastrella Stylocordyla 
Carbasea Galatheammina Pachyseris Suberites 
Carijoa Galaxea Palythoa Sycozoa 
Caryophyllia Galeopsis Paraconotrochus Synoicum 
Caulophacus Gardineroseris Paracyathus Tedania 
Cavernularia Gelliodes Paragorgia Telesto 
Cellaria Geodia Paraminabea Tentorium 
Celleporina Gephyrophora Paramontastraea Terebratulina 
Chalinula Goniastrea Parantipathes Tervia 
Chaperia Goniocidaris Parastenella Tessaradoma 
Chaperiopsis Goniocorella Paratetilla Tethya 
Characodoma Gorgonocephalus Pavona Tetilla 
Chlidonophora Guynia Pectinia Thenea 
Chondrilla Gyrosmilia Pelagodiscus Theonella 
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Chondrocladia Halichondria Pemphixina Thesea 
Chondrosia Haliclona Penares Thouarella 
Cinachyra Halisarca Pennatula Thysanometra 
Ciocalypta Halomitra Pentametrocrinus Timea 
Cladiella Helicogorgia Petrosia Topsentia 
Cladorhiza Herdmania Phakellia Trochocyathus 
Clavularia Herpolitha Phaneropora Truncatoflabellum 
Cnemidocarpa Heteroxenia Phonicosia Tubastraea 
Coelocarteria Higginsia Phyllospongia Tubipora 
Coelogorgia Himantozoum Physogyra Umbellula 
Coeloseris Hippothoa Pione Vaceletia 
Coelosphaera Histocidaris Platidia Vermiliopsis 
Colobometra Histodermella Platygyra Virgularia 
Columnella Holascus Plerogyra Walteria 
Comatella Homaxinella Plesiastrea Xenobrochus 
Conotrochus Horastrea Pleuractis Xestospongia 
Cornucopina Hyalonema Plicatellopsis Zanclea 
Cornulella Hydnophora Pocillopora Zyzzya 
Coscinaraea Hymedesmia Podabacia   
Craniella Hyrtios Poecillastra   
Craterastrea Ianthella Polycarpa   
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Table A3. Index of richness for genus and family habitat suitability models within SIOFA at quantiles 
showing the highest proportion of biodiversity in the top 10%, 5% and 2.5%. 

 Index of 
richness Top 10% Top 5% Top 2.5% 

Genus Minimum value 51.64 69.40 89.18 
 Maximum value 371.10 371.10 371.10 
Family Minimum value 27.91 38.45 48.57 
 Maximum value 183.86 183.86 183.86 
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Executive summary 

To ensure the sustainability of the exploitation of fisheries resources, a series of United 
Nations General Assembly (UNGA) resolutions called upon States to assess and prevent 
significant adverse impacts (SAIs) on vulnerable marine ecosystems (VMEs). In line with 
international resolutions, the objectives of the Southern Indian Ocean Fisheries Agreement 
(SIOFA) are “to ensure the long-term conservation and sustainable use of the fishery 
resources in the Area through cooperation among the Contracting Parties, and to promote 
the sustainable development of fisheries in the Area, taking into account the needs of 
developing States bordering the Area that are Contracting Parties to this Agreement, and in 
particular the least developed among them and small-island developing States” 
(www.apsoi.org). The aim of this report is to provide an overview of the available measures 
for assessing and preventing Significant Adverse Impacts (SAIs) on VMEs in SIOFA’s 
Convention Area. 

A literature review of management measures to prevent SAIs is presented and these are 
discussed in relation to the information that is available to SIOFA. We first review the concept 
of VME developed by the FAO Guidelines and its practical application. Then, we continue to 
list management measures with their advantages and disadvantages, the potential outcomes 
of their combination, as well as examples of their implementation. We put particular focus on 
the so-called ‘move-on rules’, a form of spatial measure, which is currently the main 
mechanism to prevent SAIs in SIOFA. Finally, we assessed the use of distribution models and 
avenues of these predictive methodologies to overcome shortcomings of individual VME 
taxon predictions.  

SIOFA’s current Conservation Management Measures (CMMs) to prevent SAIs include the 
designation of five interim benthic protected areas where trawling is not permitted. In 
addition, SIOFA has set up encounter thresholds, which are presently the main instrument to 
prevent SAIs. SIOFA is increasingly building layers of information useful to inform the 
designation of more spatial measures, in particular of spatial closures, including predictive 
models of the extent of VME bioregions and individual taxa. Other available information 
includes the consideration of Ecologically and Biologically Significant Areas (EBSAs), 
connectivity models developed in the Western Indian Ocean, and current fishing regimes in 
adjacent territorial waters of the fishing footprint. As for now, VME bycatch data is of 
insufficient temporal resolution (2017 start) to provide reliable estimates of encounter 
thresholds.  

The uncertainty in VME distributional data and predictive modelling outputs, renders fishing 
information as the most accurate and well documented source to derive results. This means 
that these layers of information should be precise and of high-resolution (within the limits of 
data confidentiality) in order to derive recommendations that protect benthic habitats and 
that are not too restrictive to fishing. The importance of high-resolution maps is key if the 
intention is to use a systematic planning procedure to design spatial closures. 
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1. Purpose of the report 

This report aims to address Terms of Reference 4 “Investigate and advise on a holistic 
framework for assessing and preventing Significant Adverse Impacts (SAIs) on vulnerable 
marine ecosystems (VMEs)” of project PAE2021-01. 

2. VME concepts: a key prelude to management 

UNGA Resolution 61/105 called upon States to assess and prevent significant adverse impacts 
on vulnerable marine ecosystems (VMEs). The implementation of this call has been reinforced 
through a series of successive resolutions which: 
 

• mandated the establishment of protocols, definitions of evidence of an 
encounter with a VME, thresholds levels and indicator species, and 
implementation of the FAO International Guidelines for the Management of 
Deep-sea Fisheries in the High Seas (FAO, 2009) (UNGA Resolution 64/72);  

• called for the use of scientific research outputs such as habitat mapping and 
the implementation of Conservation and Management measures (UNGA 
Resolution 66/68);  

• called upon RFMOs to use the full criteria in the FAO Deep-sea Fisheries 
Guidelines to identify , as well as the implementation of Sustainable 
Development Goals in accordance with the post -2015 agenda (UNGA 
Resolutions 71/123 and 72/72). 

 
The International Guidelines for the management of deep-sea fisheries in the High Seas (the 
"Guidelines"; FAO, 2009) were developed to assist in the identification of VMEs, the definition 
of significant adverse impacts, their assessment and prevention. The Guidelines provide five 
criteria to identify VMEs: 
 
Criterion 1. Uniqueness or rarity – an area or ecosystem that is unique or that contains rare 
species whose loss could not be compensated for by similar areas or ecosystems. These 
include: 
• habitats that contain endemic species; 
• habitats of rare, threatened, or endangered species that occur only in discrete areas; or 
• nurseries or discrete feeding, breeding, or spawning areas. 
 
Criterion 2. Functional significance of the habitat – discrete areas or habitats that are 
necessary for the survival, function, spawning/reproduction or recovery of fish stocks, 
particular life-history stages (e.g., nursery grounds or rearing areas), or of rare, threatened, 
or endangered marine species. 
 
Criterion 3. Fragility – an ecosystem that is highly susceptible to degradation by 
anthropogenic activities. 
 
Criterion 4. Life-history traits of component species that make recovery difficult – ecosystems 
that are characterized by populations or assemblages of species with one or more of the 
following characteristics: 
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• slow growth rates; 
• late age of maturity; 
• low or unpredictable recruitment; or 
• long-lived. 
 
Criterion 5. Structural complexity – an ecosystem that is characterized by complex physical 
structures created by significant concentrations of biotic and abiotic features. In these 
ecosystems, ecological processes are usually highly dependent on these structured systems. 
Further, such ecosystems often have high diversity, which is dependent on the structuring 
organisms. 
 
The criteria described in the Guidelines to identify VMEs are purposedly broad and flexible to 
allow for their adaptation to different regional specificities. It also accounts for the limited 
knowledge of deep-sea biodiversity and poor sampling coverage in areas beyond national 
jurisdiction. Certainly, many deep-sea ecosystems and habitats have yet to be described in 
terms of occurring species and their rarity, resistance, resilience, vulnerability, and 
functionality, which renders difficult to use the criteria set out by the Guidelines. To address 
this difficulty, several taxa have been acknowledged as VME indicator taxa. VME indicators 
are taxa that most likely occur in habitats, or create biogenic habitats, meeting the criteria for 
VMEs (FAO, 2016). These comprise a number of listed habitats and habitat-forming taxa 
including cold-water corals reefs, coral gardens from soft-bottom and coral garden from hard-
bottoms, sponge-dominated communities, communities that are composed of epifauna that 
provide a structural habitat for other associated species and bryozoan patches. These are all 
organisms attached to the seafloor, although seascapes such as seamounts, canyons, and 
knolls, are also considered VME indicators (FAO, 2016). 
 
Nonetheless, the flexibility in the Guidelines has hindered progress on the implementation of 
measures for protection to VMEs because of the lack of explicit descriptions, measurements, 
and interchange of terms of VME and VME indicators. The loose semantic use of terms and 
clarification of concepts makes efforts to establish consistent systematic approaches to 
conservation difficult (Costello, 2009; Costello et al., 2020). Watling and Auster (2021) argue 
that the concept of indicator species has been conflated with the ecosystem itself so that the 
sparse distribution of an indicator species is interpreted as the presence and absence of a 
vulnerable marine ecosystem. The use of indicator species to describe sites or habitats is 
however a classic approach in ecology (e.g., Fitzpatrick et al., 2021). Indicator species are 
species that, due to their niche preferences, can be used as ecological indicators of 
community types, habitat conditions, or environmental changes (Carignan & Villard, 2002; 
McGeoch & Chown, 1998; Niemi & McDonald, 2004). They are normally used to represent all 
other species not sampled in the ecosystem; importantly, they do not define the composition 
of an associated community, species interactions in the community, or the flows of materials 
and energy that define the bounds of an ecosystem (Watling & Auster, 2021). An ecosystem, 
on the other hand, is the combination of species, their interactions, and the physical and 
chemical processes in their environment in a defined area (Costello et al., 2020). In that sense, 
ecosystems are composed of multiple habitats that support different types of communities. 
In contrast to habitats, ecosystems are usually considered over large areas and their 
distribution reflects current environmental and ecological conditions over large areas 
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(Costello et al., 2020). Likewise, species do not define ecosystems; rather, species 
composition defines a habitat (Costello et al., 2020). Thus, using indicator species does not 
account for the whole ecosystem and its components, such as, for example, spatially distinct 
communities within a seamount (Watling & Auster, 2021). 
 
Although the aim of the Guidelines was to highlight the ecological importance of deep-sea 
species, habitats and ecosystems, the flexibility in terms has led to confusion in concepts, 
which, in turn, hinders the development of conservation measures. At the same time, it has 
allowed RFMO/As to adapt and interpret the term of VME and VME indicator accordingly to 
their region. Indeed, paragraph 43 of the Guidelines underlines that “These criteria should be 
adapted, and additional criteria should be developed as experience and knowledge 
accumulate, or to address particular local or regional needs”. Furthermore, as exemplified in 
Costello et al. (2020), despite the conflation of ecological concepts, “the context always makes 
the meaning clear” and the Guidelines mention for example 'habitats or areas’ in their criteria 
to identify VMEs (see Criterion 1, for instance). For instance, the International Council for the 
Exploration of the Sea (ICES) makes the difference (and provides context) between “VME 
habitats” as those records for which there is unequivocal evidence for a VME (e.g., ROV 
observations of a coral reef) and “VME indicators”, which are records that suggest the 
presence of a VME with varying degrees of uncertainty. In order to facilitate the 
understanding of ecological terms, we present a glossary of ecological terminology as 
reviewed by Costello et al. (2020) (Table 1). 
 
Yet, the scientific literature also reflects the sparingly semantic use of terms (Watling & 
Auster, 2021), perhaps to ascribe to the norm (i.e., the Guidelines), perhaps to keep things 
simple, perhaps due to professional bias of implicit appropriate interpretation. Watling and 
Auster (2021) exemplify the case with the work by Rowden et al. (2017) on the predicted 
distribution of the stony coral Solenosmilia variabilis in the South Pacific. They note that, 
although Rowden et al. (2017) used the term “Solenosmilia VME”, in reality it corresponds to 
the Solenosmilia community, which is only one of the many communities supported on those 
seamounts.  
 
Seamounts serve indeed as habitat for a large number of VME indicator species (Clark et al., 
2010; Rogers, 2018). As such, a community dominated by a VME indicator species might 
extend along the whole or part of a seamount chain, or range over seamounts located in large 
sections of an ocean basin. Since deep-sea fisheries develop around aggregations of resident 
fish around seamounts and ridges (Clark et al., 2007; Kerry et al., 2022), these topographically 
complex areas are usually a target for conservation. As a result, , Watling & Auster (2021) 
make the following recommendations in order to take into account the relevance of 
seamount conservation and the potential large spatial extent of seamount ecosystems:  
 

(i) use indicator species to identify individual seamount communities, but recognize 
that protecting part of a seamount identified only by the presence and distribution 
of an indicator species occurrence is not enough (Watling & Auster, 2017); 

(ii) use the seamount classification system of Clark et al. (2011) or its equivalent to 
delimit groups of similar seamounts to focus conservation management efforts 
and to distinguish between rare and abundant seamount types; 
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(iii) examine the similarities among adjacent groups of seamounts to see whether they 
should be considered to be part of a larger ecosystem group; 

(iv) evaluate the spatial extent of these larger units (larger ecosystem group) so that 
“significant adverse impacts” measures can be used to determine whether to 
allow some bottom fishing within a seamount ecosystem group.  

 
 
In summary, the correct interpretation and understanding of ecological concepts are essential 
to the implementation of conservation management measures that are ecologically 
meaningful and that support sustainable fishing. Although the FAO Guidelines and provisions 
within may be imprecise, they also provide the opportunity to adapt to each regional case. In 
the following sections we continue to review available management actions; measures taken 
by other RFMO/As; the use of modelling for scenarios to inform management, and the 
applicability to SIOFA of available measures with the available information.



Table 1. Summary of the definitions and examples of ecological terminology. Taken and 
modified from Costello et al. (2020). 
 

Concept Definition How is it measured? Examples 
Realm Geographic area 

distinguished by a high 
proportion of endemic 
species arising from 
evolutionary history. 

Geographic 
distribution of species. 

Marine realms 
(Costello et al., 2017) 

Biome A large region 
characterised by similar 
habitat-forming plant 
growth forms enduring 
over years. 

 Kelp forest, mangrove 
forest, seagrass 
meadow, salt-marsh, 
shallow coral reefs. 

Ecosystem A large area of similar 
environmental conditions 
where it is considered 
that biological 
interactions and energy 
fluxes are greater within 
the ecosystem than 
across its boundaries to 
adjacent ecosystems. 

Cluster analysis of 
environmental 
variables that would 
define a water mass 
and be related to 
ecological conditions, 
such as nutrients, 
salinity, light, and 
temperature. 

The 3D "Ecological 
Marine Units" of 
(Sayre et al., 2017). 

Seascape A topographic or 
physiographic area 
defined by the shape of 
the coastline, 
bathymetry, and/or 
hydrography. 

May be defined  
visually, by acoustic 
seabed mapping, 
aerial photography, 
spectrophotometric 
sensing (ocean 
colour), temperature, 
salinity. 

Fjord, banks, canyon, 
trench, ridge, shelf, 
slope, seamount, 
basin, plain, depth 
zones. 

Habitat A physical  environment 
inhabited by a named 
species or community 
over a timescale of years 
and replicated spatially. 

Depends on the 
species or community 
of interest. The 
habitat for a marine 
mammal, seabird, and 
fish may be very 
different in size and 
physical environment. 

Desmophyllum 
pertusum reefs, coral 
gardens, carbonate 
mounds, sea-pen and 
burrowing megafauna 
communities (OSPAR 
Agreement 2004-6). 

Biogenic habitat A three-dimensional 
habitat created by a 
species or group of 
species and occurring 
over a timescale of years 
and replicated spatially. 

 Biomes at a local scale 
where the species are 
named, e.g., Zostera 
marina meadow. 

Assemblage A group of species found 
together. Whether they 
interact or not is not 
known or assumed. 

 In practice conflated 
with community. 
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Concept Definition How is it measured? Examples 
Community An assemblage of 

interacting species in a 
particular habitat 
occurring over a 
timescale of years and 
replicated spatially. 

Visual observation, 
photography, samples 
of substrata and biota 

E.g., Solenosmilia-
dominated 
communities (Rowden 
et al., 2017) 

Region (bio- eco- 
region, province, 
zone, section) 

Expert opinion and/or 
based on ad hoc use of 
biogeographic, 
oceanographic or 
management criteria. 

Variously defined 
depending on the 
context of the study. 
Bioregions may be 
defined by 
environmental 
conditions and 
selected species 
distributions. 

Administrative 
environmental 
management areas for 
fisheries, 
conservation. 
Reviewed in Costello 
(2009) and (Zhao & 
Costello, 2020). 

FAO Guidelines 
interpretation (ad-
hoc addition to 
Costello et al. 
(2020) review) 

   

VME indicator Taxa most likely to occur 
in habitats or that create 
biogenic habitats 
meeting the criteria for 
VMEs (FAO, 2016).  
ICES differentiates: 
1) 'VME habitats' that are 
records for which there is 
unequivocal evidence for 
a VME (e.g., ROV 
observations of a coral 
reef). 
2) 'VME indicators' are 
records that suggest the 
presence of a VME with 
varying degrees of 
uncertainty. A weighting 
system of vulnerability 
and uncertainty is used 
to aid interpretation. 

Groups of species, 
communities, 
habitats, and 
seascapes such as 
seamounts. 

Cold-water coral reefs, 
coral gardens from 
soft-bottoms (e.g., cup 
corals, cauliflower 
coral fields, soft-
bottom gorgonians 
and black coral 
gardens) and coral 
gardens from hard-
bottoms (hard-bottom 
gorgonians and black 
coral gardens, colonial 
scleractinians, non-
reefal scleractinian 
aggregations), sponge 
dominated 
communities, (e.g., 
North-East Atlantic 
Fisheries Commission, 
FAO, 2016). 

VME Large areas containing 
habitats, communities, 
and populations whose 
life-histories, functional 
and structural 
significance 
characteristics render 
them susceptible to 
anthropogenic 
disturbance. 

Area, habitat, 
ecosystem. 

Cold-water coral reefs, 
hydrothermal vents, 
seeps. 
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3. Measures to prevent impacts on VMEs and VME indicator taxa 

To prevent potential impacts on vulnerable species and habitats from bottom fishing, 
RMFO/As need to adopt conservation and management measures (CMMs), or close areas to 
bottom fishing until such CMMs are adopted (UNGA Resolution 66/68). In addition, they are 
required to assess the potential impacts of bottom fishing (UNGA Resolutions 71/123 and 
72/72), for which the FAO Guidelines provide some criteria against which to identify what 
constitutes a significant impact. With regards to management measures, they can be in the 
form of spatial, technical or effort controls. These measures have varying levels of 
implementation success due to the uncertainty around VME biodiversity. For instance, a type 
of real-time spatial measure known as the “move on rule” requires a quantitative definition 
of what constitutes a VME. However, for other spatial measures, such as spatial closures or 
reserve design, predictions from species distribution models for VME indicator taxa can help 
to circumvent data shortfalls.  
 
In this section, we first introduce the FAO definition of significant adverse impacts to provide 
context (“3.1. Significant adverse impacts”); we then elaborate on available management 
measures to address potential bottom-fishing impacts, with examples from other regions 
(“3.2 Management measures); we continue with the subject on the ‘move-on rule’ (“3.2.1 
Move-on protocols”), and finish with a discussion on spatial measures and their dependency 
on distribution models for designating spatial closures or reserve design (“3.2.2 Dependency 
of spatial measures on distribution models"). 

3.1 Significant adverse impacts 
 
The FAO Guidelines describe significant adverse impacts (SAIs) as those that affect the 
ecosystem structure and function so that they: (i) impair the ability of affected populations to 
replace themselves; (ii) degrade the long-term natural productivity of habitats; or (iii) cause, 
on more than a temporary basis, significant loss of species richness, habitat, or community 
types (FAO, 2009). When assessing an impact, the spatial and temporal (duration and 
frequency) extent of the impact on the species, habitat, or ecosystem, must be considered.  
 
When determining the scale and significance of an impact, the following six factors should be 
considered: 

i. the intensity or severity of the impact at the specific site being affected; 
ii. the spatial extent of the impact relative to the availability of the habitat type 
affected; 
iii. the sensitivity/vulnerability of the ecosystem to the impact; 
iv. the ability of an ecosystem to recover from harm, and the rate of such recovery; 
v. the extent to which ecosystem functions may be altered by the impact; and 
vi. the timing and duration of the impact relative to the period in which a species needs 
the habitat during one or more of its life-history stages. 

 
Temporary impacts are those that are limited in duration and that allow the particular 
ecosystem to recover over an acceptable time frame. Such time frames should be decided on 
a case-by-case basis and should be in the order of 5-20 years, taking into account the specific 
features of the populations and ecosystems (Paragraph 19). 
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In determining whether an impact is temporary, both the duration and the frequency at which 
an impact is repeated should be considered. If the interval between the expected disturbance 
of a habitat is shorter than the recovery time, the impact should be considered more than 
temporary. In circumstances of limited information, States and RFMO/As should apply the 
precautionary approach in their determinations regarding the nature and duration of impacts 
(Paragraph 20). 
 

3.2 Management measures 
 
The FAO Guidelines require States to have a ‘functioning regulatory framework [that] should 
include an appropriate set of rules and regulations for the management of existing fisheries, 
as well as for the opening of new areas to exploratory fishing, consistent with these Guidelines 
and other relevant instruments. Such a framework should also include regulations to protect 
vulnerable populations, communities, and habitats. Management measures and voluntary 
industry actions (hereafter ‘measures’) that can be used to reduce and manage trawling 
effects on seabed habitats and biota can be grouped into four classes (McConnaughey et al., 
2020): 
 

1) Technical measures: refer to changes in gear design and operations; 
2) Spatial controls: include gear-specific prohibitions, freezing the trawling footprint, 

nearshore restrictions and coastal zoning, prohibitions by habitat type including real 
time (i.e., ‘move-one rules) and multipurpose habitat management (e.g., marine 
protected areas, MPAs), 

3) Impact quotas: output controls that include invertebrate bycatch or habitat-impact 
quotas; 

4) Effort controls: affect the overall distribution of trawling.  
 
The four classes of measures can be evaluated using qualitative and quantitative performance 
metrics, although the preferred metrics will ultimately depend on the local, national, or 
regional context (McConnaughey et al., 2020). McConnaughey et al. (2020) propose four 
metrics for evaluation that include the positive and negative effects of trawling on (a) benthic 
biota; (b) sustainable fish populations and food productions, (c) ecosystems and ecosystem 
services and (d) economic performance of the fishery (Table 2). In addition, the different 
measures can be used singly or in combination; however, there may exist positive or negative 
interactions between these and other existing management actions (McConnaughey et al., 
2020). Consequently, any potential interactions need to be considered systematically when 
any new measure is to be introduced. McConnaughey et al. (2020) assess such interactions 
and their consequences, which we present in Table 3. 
 
To exemplify how the identification and assessment of available measures may promote 
discussions between stakeholders and subsequent actions in a region, we summarise the 
recent work that took place in the northeast Atlantic. The International Council for the 
Exploration of the Sea (ICES) is the organisation tasked with providing advice to the North-
East Atlantic Fisheries Commission. On a workshop to discuss the recent work by 
McConnaughey et al. (2020), ICES gathered fishing representatives, non-governmental 
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organization (NGO) representatives and managers as part of a new request for “advice on a 
set of management options to reduce the impact of mobile bottom contacting fishing gears 
(MBCG) on seafloor habitats, and for each option provide a trade-off analysis between 
fisheries and the seafloor” (ICES, 2021). The purpose of the advice request was to provide a 
neutral analysis of potential costs or benefits to fisheries of achieving different levels of 
seafloor protection, based on the different management options identified. Outcomes of the 
workshop fed into a subsequent technical workshop where trade-offs were quantified, when 
tools and data were available, for each management option in different EU (sub-)regions and 
subdivisions (ICES, 2021). Participants from each group were asked to select five preferred 
management scenarios from a series of actions and discuss strengths and weaknesses. 
Additionally, participants were asked to comment on four options involving the removal of 
MBCG fishing effort (with nested options) by either starting from the least or most fished grid 
cells, and on freezing the MBCG fishing effort activity. Here, we summarise the outputs of this 
workshop in Table 4. In a similar manner, this exercise could be conducted by SIOFA to identify 
what is or not possible for their region. 
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Executive summary 

The present study assessed and quantified existing potential fishing impacts on predicted 
bioregions based on VME indicator taxa in the SIOFA area. Specifically, we investigated the 
intensity and spatial extent of fishing activities by gear type across bioregions, expressed as 
aggregated fishing effort (number of fishing events). We base the present study on the 
predictive bioregionalization method “group first, then predict” developed in project 
PAE2020-02. 
 
In order to investigate how the existing fishing footprint could be potentially impacting 
predicted bioregions based on VME indicator taxa, we focused on understanding potential 
impacts in three ways: (1) how the fishing effort (split by gear type) was distributed over 
bioregions; (2) how the number of fishing events was distributed across the probability classes 
of the bioregions; and (3) how the spatial and intensity data could be integrated in an index 
that quantified the impact. 
  
To assess the spatial extent and intensity of fishing per bioregion, we recovered the 
predictions of the habitat suitability scores of each bioregion and classified them in intervals 
of increasing suitability. For each gear type, fishing effort expressed as aggregated number of 
fishing events per pixel, was classified based on 10% quantiles. Next, we calculated the 
frequency of the number of fishing events per quantile and per suitability class.  
We developed a fishing intensity impact index that measured how bioregions were affected 
by fishing by accounting for the fishing intensity (the higher the fishing intensity, the higher 
the index), and the location of fishing (the more fishing occurring in high suitability areas, the 
higher the index). In addition, the index was relative to the total surface area of each 
bioregion. 
 
The overall picture indicated that fishing activities in SIOFA occur across all three main 
bioregions, although fishing types are spatially distributed and take place differently across 
nested subregions. While trawling, gillnet and trap fishing are only present in bioregion 1 and 
bioregion 3, only line fishing is present in bioregion 2. The intensity of fishing is also variable 
per gear type, but we found that, in many subregions, areas with maximum fishing intensity 
coincided with areas of high suitability for subregions. Our analyses suggested that bioregion 
1 was affected with most of the fishing intensity by trawling, gillnets, and traps. For 
subregions, subregion 1.2 was the most impacted from bottom trawling, gillnet, and line 
fishing, while subregion 1.1 was the most at risk for traps. 
 
The impact index offers a first approximation to assess potential impacts of fishing on 
bioregions. As new data becomes available in the form of better bioregion predictions and 
yearly fishing effort, the index can be updated accordingly. In combination with SIOFA’s 
expert knowledge of their fisheries and area of competence, the index can be used to 
highlight particular areas of conservation interest around ambiguous areas and explore 
impacts of management measures.  
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1. Purpose of the report 

This report aims to address Terms of Reference 5 “Identify and update existing and potential 
Significant Adverse Impacts (SAIs) on vulnerable marine ecosystems (VMEs) within SIOFA 
area” of project PAE2021-01. 
 

2. Introduction 

The main objectives of the management of deep-sea fisheries are to promote responsible 
fisheries that provide economic opportunities while ensuring the conservation of marine 
living resources and the protection of marine biodiversity, by ensuring the long-term 
conservation and sustainable use of marine living resources in the deep seas; and preventing 
significant adverse impacts on VMEs (Paragraph 11 of the FAO Guidelines; FAO, 2009).  
 
Significant adverse impacts are those that compromise ecosystem integrity (i.e., ecosystem 
structure or function) in a manner that: (i) impairs the ability of affected populations to 
replace themselves; (ii) degrades the long-term natural productivity of habitats; or (iii) causes, 
on more than a temporary basis, significant loss of species richness, habitat or community 
types. Impacts should be evaluated individually, in combination, and cumulatively (Paragraph 
17 of the FAO Guidelines; FAO, 2009).  
 
FAO Guidelines indicate that when determining the scale and significance of an impact, there 
are six factors to be considered (FAO, 2009):  

(i) the intensity or severity of the impact at the specific site being affected;  
(ii) the spatial extent of the impact relative to the availability of the habitat type 

affected;  
(iii) the sensitivity/vulnerability of the ecosystem to the impact;  
(iv) the ability of an ecosystem to recover from harm, and the rate of such 

recovery;  
(v) the extent to which ecosystem functions may be altered by the impact; and 
(vi) the timing and duration of the impact relative to the period in which a species 

needs the habitat during one or more of its life-history stages. 
 
In this study we focus on how the fishing footprint of SIOFA’s fisheries potentially overlaps 
with the distribution of predicted bioregions of VME indicator taxa in the Convention Area to 
assess potential significant impacts. The present work builds on a bioregionalization scheme 
developed during project PAE2020-02, where three modelling techniques were used to 
develop three classifications (Ramiro-Sánchez & Leroy, 2022). We base the present study on 
the bioregionalization method “group first, then predict”, which yielded the more robust 
results (see Ramiro-Sánchez & Leroy, 2022 for a detailed discussion of the methods). 
Furthermore, we investigate the intensity of the aggregated fishing effort (as number of 
fishing events) across bioregions and develop a fishing intensity impact index to quantify how 
each fishing gear type (trawling, gillnets, lines, and traps) may impact the different bioregions 
existing within SIOFA. The index takes into account the intensity of fishing in relation to the 
predicted probabilities of occurrence of each bioregion. 
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3. Methods 

3.1 Data 
 
Fishing data 
 
Fishing effort was provided as aggregated number of fishing events and as tonnes of fish catch 
per grid cell (pixel) for bottom-trawling, gillnets, lines, and traps fishing. The spatial resolution 
of the layers was 10 arc min (~ 17.5 km at the equator).  
 
Bioregions 
 
Project PAE2020-02 developed three bioregionalization schemes based on VME indicator taxa 
for the Southern Indian Ocean (Ramiro-Sánchez & Leroy, 2022). Out of the three schemes, we 
exclusively use the predicted distributions of the bioregions produced with the “group first, 
then predict” modelling approach, deemed as the most robust in terms of results. A detailed 
description of the three modelling methods, advantages, and disadvantages were presented 
in the corresponding report1 for the consultancy (Ramiro-Sánchez & Leroy, 2022). For context, 
we include here in Appendix A a brief overview of the methods of the “group first, then 
predict” approach, the interpretation of the bioregions, and the combined spatial predictions. 
 
We recovered the individual predictions of the bioregions at the first hierarchical level 
(hereafter “fist-level bioregions”) and at the second hierarchical level (hereafter “nested 
subregions”) resulting from the bioregionalization analysis. Figure 1 shows the predictions of 
the first-level bioregions and Figure 2 shows the predictions of the nested subregions. 
 
 

 
Figure 1. Predictive suitability models for the three bioregions detected at the first hierarchical level of 
the bioregionalization analysis “group first, then predict”. Suitability values range from 0 (unsuitable 
environments) to 1000 (highly suitable environments). A description of each bioregion is included in 
Appendix A.  
 

 
1 https://siofa.org/sites/default/files/files/VMEMapping_FullReport.pdf 



An assessment of significant adverse impacts from fishing activities in SIOFA 
 

 5 

Figure 2. Predictive suitability models for the eight nested subregions detected at the second 
hierarchical level of the bioregionalization analysis “group first, then predict”. Suitability values range 
from 0 (unsuitable environments) to 1000 (highly suitable environments). A description of each 
subregion is included in Appendix A. 
 



3.2 Assessment of potential SAIs on bioregions of VME indicator taxa 
 
In order to investigate how the existing fishing footprint could be potentially impacting 
bioregions based on VME indicator taxa, we focused on understanding potential impacts in 
three ways: 
 

1) First, we focused on how the fishing footprint (split by gear type) is distributed over 
bioregions, i.e., over which bioregions each fishing type occurs.  
 

2) Second, we focused on the fishing intensity across bioregions, i.e., how the number of 
fishing events is distributed across the probability classes of the bioregions. 

 
3) We integrated fishing intensity and where it occurs (over which bioregion probability 

classes) in a “fishing intensity impact index” to assess how potentially impacted is each 
bioregion.  

 
In the next sections we elaborate on the methods for each of the three objectives. 
 
 
3.2.1 Spatial distribution and intensity of fishing in SIOFA’s bioregions 
 
We recovered the distribution of suitability scores for each of the main three bioregions 
(Figure 1) and the eight nested subregions (Figure 2) relative to the total suitability scores. 
We preferred to consider the total suitability scores rather than values beyond a given 
threshold of suitability because the latter suggests binary transformations, which are an 
oversimplification of the biological reality and generally misleading (Muscatello et al., 2021). 
We resampled the predictive maps from 1° to 10 arc min - the same resolution as the 
aggregated fishing effort.  
 
Predicted bioregion suitability values, which ranged from 0 to 1000, were next classified in 
ten intervals by 100 suitability increases. Fishing effort for each gear type, expressed as 
aggregated number of fishing events per pixel, was classified based on 10% quantiles. Next, 
we extracted the suitability of each bioregion at the centroid coordinates of the fishing effort 
pixel for each gear type. We then calculated the frequency of the number of fishing events 
per 10% quantile. Alluvial plots were created with this summary information for each 
bioregion and gear type.  
 
3.2.3 Fishing intensity impact index 
 
To quantify the difference in fishing intensity across bioregions and gear type, we developed 
a fishing intensity impact index that weighs the intensity of fishing (as aggregated number of 
fishing events) according to the suitability class where it occurs and the total number of 
aggregated fishing events occurring per suitability class. 
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The overarching objective of this index is to summarize how each bioregion is impacted by 
fishing. We designed an index of impact such that regions that are fished with high intensity 
(i.e., large number of fishing events), especially in their areas predicted with highest 
suitability, will be considered as heavily impacted; whereas a low impact will be attributed to 
regions with lower intensity of fishing, or which are only fished in areas of low suitability. 
Therefore, the index has two main components and is thus calculated in two steps. First, we 
estimate the intensity of fishing on a per-pixel basis. This step is done by assigning weights to 
each pixel based on the fishing intensity. Second, the impact index is calculated for the entire 
region by combining fishing impact weights and bioregion suitability values for all pixels of 
the regions, such that pixels with a high suitability weigh more in the final index than pixels 
with a low suitability. 
 
3.2.3.1 Step 1: Calculating fishing impact weights for each pixel 
 
Because the distribution of fishing impact is highly skewed (i.e., a low number of pixels have 
extremely high values), it cannot be linearly included in an index, otherwise the index values 
would be highly skewed as well. To address this issue, we calculated fishing impact weights 
that are based on classes of fishing efforts. To define classes of fishing effort, we used 10% 
quantiles. In other words, the first class is composed of the 10% cells with the lowest fishing 
effort; the second class is composed of the next 10% cells with lowest fishing effort, and so 
on until the last class, which is composed of the 10% cells with the highest fishing effort. We 
assigned a rank to each class, starting from rank 1 which is always the class with no fishing 
effort, and followed by the classes of fishing effort until the maximum rank, which 
corresponds to a class with maximum fishing. The number of ranks varies depending on the 
distribution of fishing effort, because multiple classes can be merged together if they share 
the same amount of fishing events. For example, if the 20% of cells with the lowest fishing 
effort all have only one fishing event, then the 0-10% and 10-20% will be merged in a single 
class. Regardless of the number of ranks, the rank will always start at 1 (no fishing). To account 
for the variable number of ranks, our weighting scheme is relative to the maximum rank, such 
that the weight ranges from 0 (the pixel is not fished at all) to 1 (the pixel is fished with 
maximum intensity): 
 
 

𝑤𝑒𝑖𝑔ℎ𝑡 = 	
!"	 !

"#$%&	

!"	 !
'()	("#$%)&

   Equation 1 

 
 
The exponent y offers the user flexibility to assign different importance to the ranks: the 
exponent affects how rapidly and steep is in the change in weight relative to the rank. It can 
take any value above 0. Values of y above 1 will decrease the differences among classes, as 
most classes of fishing impact will have a high weight (Figure 3). Values of y below 1 will 
increase the differences among classes, until it becomes almost linearly proportional to the 
ranks of the classes (Figure 3). In other words, lower ranks will have more or less importance 
(i.e., weight) as higher ranks depending on the value of y. In this investigation, we used a value 
of y = 1 as a starting case to compute the fishing impact index for each bioregion. 
 



An assessment of significant adverse impacts from fishing activities in SIOFA 
 

 8 

 

 
Figure 3. Changes in weight as a function of fishing effort ranks. The parameter y (Equation 1) 
influences the rate at which higher weight values are obtained for a given rank (derived from classifying 
fishing effort in 10% quantiles). For y < 1, weights are almost linearly proportional to the ranks; for y > 
1 differences decrease among ranks. 
 
 
 
3.2.3.2 Step 2. Calculating the impact of fishing per bioregion 
 
Once all weights have been calculated for all pixels, we compute the impact index for each 
bioregion. To estimate how much a region is impacted by fishing, the basic calculation consists 
of summing the fishing impact weights of all pixels of the region. However, because we want 
to distinguish between high suitability areas and low suitability areas, we ponder the fishing 
impact of each pixel by its suitability, such that pixels with highest suitability weigh more in 
the final index than pixels with lowest suitability. 
 
Suitability values range from 0 to 1000, which we split into 10 intervals of 100 increments (0-
100, 100-200, …, 900-1000). For the lowest class (0-100) we defined a suitability weight of 0, 
because the number of pixels with a low suitability is expected to be disproportionately high 
for many regions. In other words, pixels which are unsuitable for a given region do not weigh 
in the index. For all classes between 100 and 1000, we used the upper boundary as the 
suitability weight divided by 1000, e.g., for the suitability class (100,200] the weight is 0.2, 
whereas for the maximum suitability class (900, 1000], the weight is 1. Thus, the weight is 
proportional to the suitability class where fishing is present. The fishing intensity impact index 
results as follows: 
 

𝐼𝑚𝑝𝑎𝑐𝑡	𝑖𝑛𝑑𝑒𝑥 =
∑

∑ "#$#
%$

×#$$

∑ #$$
     Equation 2 
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where i refers to pixel and j to habitat suitability class (𝐻$), 𝑤%$  is the weight of a pixel for a 
given suitability class, and 𝑁$  is the to total number of pixels of a given suitability class. The 
division of the sum of fishing impact weights by the total number of pixels for a given habitat 
suitability class ensures that the index is not disproportionately affected by classes with very 
large number of pixels– it works based on the proportion of fished pixels in each suitability 
class. 
 
The impact index theoretically ranges from 0 (none of the pixels of a bioregion are fished) to 
1 (all pixels of a bioregion are fished with the maximum intensity of impact). However, in 
practice, the actual values of the impact index will be very small, because the proportion of 
non-fished pixels is enormous relative to the number of fished pixels (i.e., fishing occupies a 
small area within SIOFA relative to the overall SIOFA’s area of competence). For reference, 
we provide the proportion of fished pixels relative to the total number of pixels in a suitability 
class per bioregion and subregion in Table B1 and Table B2 of Appendix B, respectively. Thus, 
the purpose of the index is not to be interpreted as an absolute value – but rather to serve as 
an index of the evolution of fishing practices in the SIOFA area and explore which bioregions 
are the most affected by fishing impacts, according to gear type. For example, the index could 
be used to analyse the effect of fishing management measures, such as how limiting or 
fostering fishing in a particular area would affect the index of fishing impact for each 
bioregion. 
 
All analyses were conducted in the R statistical software (R Core Team, 2021). 
 
 

4. Results 

4.1 Spatial distribution of fishing within bioregions 
 
Bottom-trawling, gillnets, and line fishing activities occurred across all three first-level 
bioregions. Trawling dominated in bioregion 1 and bioregion 3 (Figure 4); fishing with gillnets 
dominated in bioregion 1 (Figure 5); and fishing with lines was predominant in bioregion 1 
and bioregion 2 (Figure 6). In contrast, fishing with traps only took place in bioregion 1 and 
bioregion 3 (Figure 7). 
 
Inspecting the aggregated fishing effort in the nested subregions indicated that trawling 
occurred across all suitability areas in all subregions, except for subregion 2.1 and subregion 
2.4 (Figure 8). For subregions 1.1, 1.3, and 3.1, trawling occurred across all suitability classes: 
in low (< 300), moderate (between 300 and 700) and high suitability areas (> 700). Trawling 
occurred in areas of low suitability (< 300) of subregion 1.7, and in areas of moderate 
suitability (between 300 and 700) of subregion 1.2.  
 
Fishing with gillnets occurred only in subregion 1.2 in low (< 300) and in moderate suitability 
areas (between 300 and 700) (Figure 9).  
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Fishing with lines occurred in moderate (between 300 and 700) and high suitability areas (> 
700) of subregion 1.1; in low suitability areas (< 300) of subregion 1.3 and subregion 1.7; in 
low (< 300), moderate (between 300 and 700) and high suitability areas (> 700) of subregion 
2.1; and in low (< 300), moderate (between 300 and 700) suitability areas of subregion 2.4 
(Figure 10). 
 
Fishing with traps occurred only in subregion 1.1 in low (<300) and high (> 700) suitability 
areas, and in subregion 3.1 in moderate (between 300 to 700) suitability areas (Figure 11). 
 
We have included figures for subregion 1.5 in the report for reference but note that this 
subregion is not predicted within SIOFA (see Figure 2), therefore analyses do not apply to this 
subregion.  
 
 
4.2 Fishing intensity within bioregions 
 
First-level bioregions 
 
Trawling 
Fishing intensity ranged from 2 to 2550 aggregated number of events per pixel. The number 
of 1 and 2 fishing events are overrepresented, such that their classes cover 30% to 40 % of 
the pixels (Figure 4).  
 
Bottom-trawl fishing occurred across all suitability classes of bioregion 1, but 75% of the 
fishing events occurred in the very high suitability classes (those with suitability > 700) (Figure 
4). Fishing events in the top 90% quantile of the distribution (from 55 to 2550 events per pixel) 
also occurred more frequently in the higher suitability class. In Bioregion 2, virtually all fishing 
events occurred in areas predicted as low suitability for the bioregion (suitability class 0-100). 
Bioregion 3 showed an inverse trend to that of bioregion 1: most fishing occurred in areas of 
low suitability (0-100) (75% of the data); however, it also occurred in areas of high suitability, 
including fishing events in the top 10% most suitable cells. 
 
Gillnets 
Fishing intensity ranged from 3 to 131 aggregated number of events per pixel (Figure 5). 
 
All of the aggregated gillnet fishing events occurred in areas of very high suitability (> 800) 
for bioregion 1, whereas for bioregion 2 and bioregion 3 these occurred in areas of very low 
suitability. 
 
Lines 
Fishing intensity ranged from 2 to 1089 aggregated fishing events per pixel (Figure 6).  
 
For bioregion 1, about 50% of the line fishing events occurred in areas of very high suitability 
(> 900) and the other 50% across the remaining suitability classes, with each fishing intensity 
quantile class equally distributed among the suitability classes. Bioregion 2 displayed an 
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inverse pattern: 50% of the fishing events across all fishing intensities occurred in areas of low 
suitability for bioregion 2 (< 100) and the other 50% was distributed across the remainder of 
the suitability classes, with in total more than a quarter of fishing events located in high 
suitability areas (> 700). Bioregion 3 had all fishing events classes occurring within low 
suitability classes (< 300). 
 
Traps 
Fishing intensity ranged from 1 to 57 aggregated events, which occurred very infrequently 
(Figure 7).  
 
All trap fishing activity in bioregion 1 occurred in areas of medium (500-600) and high 
suitability (> 900). Bioregion 2, in contrast, had all activity occurring in areas of very low 
suitability (< 100). Bioregion 3 had trap activity in areas of low (< 200) and medium (400-600) 
suitability.  
 
 
Second-level bioregions 
 
Trawling 
In subregion 1.1 there was fishing activity across all suitability classes (Figure 8). 
Approximately 90% of the fishing events occurred in areas of very low suitability (< 100). We 
note that the highest fishing intensity classes (from 16 to 2550 events) also occurred in high 
(> 800) suitability classes. 
 
Subregion 1.2 presented fishing activity in low to moderate suitability classes (100 – 600), 
although most the events occurred in the low suitability areas (Figure 8). The highest fishing 
intensity events occurred also mostly in the low suitability areas. 
 
Bottom-trawling fishing occurred all suitability classes of subregion 1.3, but 75% of them 
occurred in the low class (< 100) (Figure 8). Very few events across all types of intensity 
occurred in the higher suitability classes. 
 
In subregion 1.7, the lower suitability classes (< 300) presented all fishing activity, with the 
fishing intensity event classes similarly occurring across the three suitability classes (Figure 8). 
 
Bottom-trawling in subregion 2.1 and subregion 2.4 occurred only in very low suitability 
classes (< 100) (Figure 8). 
 
About 90% of the bottom-trawling activity in subregion 3.1 occurred in the very low suitability 
class (< 100), however, fishing occurred across all suitability types, with the 10% of the 
remaining events happening in the rest of suitability classes equally (Figure 8). 
 
Gillnets 
Fishing with gillnets occurred only in areas of very low suitability (< 100) in all subregions 
except for subregion 1.2 (Figure 9). In subregion 1.2, fishing occurred in low (0 to 300) to 
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moderate suitability areas (300 - 600), with more prevalence in the latter. Fishing intensity 
event classes were equally distributed across the moderate suitability classes. 
 
Lines 
Fishing with lines occurred across all subregions, except for subregion 1.3, where it occurred 
in areas of low suitability (< 200), and for subregion 3.1 where it only occurred in areas of very 
low (< 100) suitability class (Figure 10). 
 
In subregion 1.1, about 75% of the fishing events occurred in very low suitability areas and 
the remaining 25% was distributed across areas of moderate to high suitability (500 -900) 
(Figure 10). All fishing intensity classes were present in the high suitability class.  
 
In subregion 1.2, fishing was prevalent across low to moderate suitability areas, with 60% of 
the events occurring in the low suitability areas (Figure 10). Notably, the top 10% of highest 
fishing intensity events occurred almost entirely in the lowest suitability class, while the top 
20% occur in the highest suitability class (moderate, in this case). 
 
Line fishing in subregion 1.7 occurred across low suitability areas (100 - 300) and all fishing 
intensity classes distributed across them (Figure 10). 
 
Subregion 2.1 had fishing across all suitability classes, with approximately 90% of the events 
occurring in the very low (< 100) and low (200-300) suitability class (Figure 10). The 
remaining 10% of fishing events were distributed across the higher suitability areas. All 
fishing intensity events were present in all the suitability areas. 
 
Subregion 2.4 presented a similar trend to subregion 2.1. About 90% of the events occurred 
in areas of very low suitability (< 100) and the remaining 10% in areas of low to moderate 
suitability (300-600) (Figure 10). The different fishing intensity classes were present in all 
predicted suitability areas. 
 
Traps 
Fishing with traps occurred only in subregion 1.1 and subregion 3.1 (Figure 11) – for all other 
regions it happened in very low suitability areas (0-100). In subregion 1.1, the lowest fishing 
intensity events occurred in areas of very low suitability (< 300) whereas pixels fished at the 
highest fishing intensity occurred in the areas of high suitability (> 800) for subregion 1.1. In 
contrast, in subregion 3.1, fishing at lowest intensity occurred in moderate suitability (< 500) 
areas. 



 
Figure 4. Alluvial diagram depicting the distribution of bottom-trawling fishing effort (as aggregated 
number of fishing events) across first-level bioregions. For each bioregion, the diagram also shows how 
the frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes.



 
Figure 5. Alluvial diagram depicting the distribution of gillnets fishing effort (as aggregated number of 
fishing events) across first-level bioregions. For each bioregion, the diagram also shows how the 
frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes.



 
Figure 6. Alluvial diagram depicting the distribution of line fishing effort (as aggregated number of 
fishing events) across first-level bioregions. For each bioregion, the diagram also shows how the 
frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes.



 
Figure 7. Alluvial diagram depicting the distribution of traps fishing effort (as aggregated number of 
fishing events) across first-level bioregions. For each bioregion, the diagram also shows how the 
frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes.



 
Figure 8. Alluvial diagram depicting the distribution of bottom-trawling fishing effort (as aggregated 
number of fishing events) across second-level nested subregions. For each bioregion, the diagram also 
shows how the frequency of fishing events, classed in 10% quantiles, is distributed across the predicted 
habitat suitability classes.



 
Figure 9. Alluvial diagram depicting the distribution of gillnets fishing effort (as aggregated number of 
fishing events) across second-level nested subregions. For each bioregion, the diagram also shows how 
the frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes. 



 
Figure 10. Alluvial diagram depicting the distribution of line fishing effort (as aggregated number of 
fishing events) across second-level nested subregions. For each bioregion, the diagram also shows how 
the frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes. 



 
Figure 11. Alluvial diagram depicting the distribution of traps fishing effort (as aggregated number of 
fishing events) across second-level nested subregions. For each bioregion, the diagram also shows how 
the frequency of fishing events, classed in 10% quantiles, is distributed across the predicted habitat 
suitability classes. 



An assessment of significant adverse impacts from fishing activities in SIOFA 
 

 21 

4.3 Fishing intensity impact index 
 
The fishing intensity impact index measures how bioregions are affected by fishing by 
accounting for two parameters: first, the fishing intensity (the higher the fishing intensity, the 
higher the index); second, the location of fishing (the more fishing occurs in high suitability 
areas, the higher the index). Therefore, values of the index will increase for a bioregion if 
fishing intensity is high in areas of high suitability. 
 
The index is relative to the total surface area of each bioregion, hence the fishing intensity 
impact index is expected to have very low values because fishing is expected to only occur in 
a small proportion of the area, but also because the intensity of fishing is not expected to be 
maximal everywhere. To grasp the meaning of the index, we invite readers to compare its 
values with the figures above. For example, values of the index in Table 1, column Trawling, 
can be compared with Figure 4: it is obvious from Figure 4 that bioregion 1 is the most 
impacted of the three regions, which is reflected in the index. Note however that, as explained 
in the methods, the lowest suitability class (0-100) has a suitability weight of 0 in the index, 
and so it does not affect the index: index values are only affected by suitability classes > 100. 
In addition, unfished cells do not appear in Figures 4-11, but do weigh in the calculation of 
the index: the higher the number of unfished cells, the lower the index value (for the 
proportion of fished pixels relative to total number of pixels in a suitability class per bioregion 
and subregion, see Table B1 and Table B2 in Appendix B, respectively). 
 
The fishing intensity impact index revealed differences between the three first-level 
bioregions per gear type and among gear types (Table 1). For bottom trawling, bioregion 1 
was the most intensely fished of the three first-level bioregions, 14 times more intensely 
fished than bioregion 3 for instance, and with bioregion 2 the least impacted. For gillnets, 
bioregion 1 was again the most impacted, followed by bioregion 2 and, lastly, bioregion 3. In 
contrast, for line fishing, it was bioregion 2 the most impacted, twice impacted than bioregion 
1, while bioregion 3 had a negligible impact in comparison. Finally, the risk of impact for trap 
fishing was generally low, null for bioregion 2 and higher for bioregion 1 than bioregion 3. 
 
 

Table 1. Fishing intensity impact index for first-level bioregions at the of the bioregionalization 
analysis. 

 

  Trawling Gillnets Lines Traps 
Bioregion 1 0.02066048 0.00488618 0.00701453 0.00012608 
Bioregion 2 0.0000280 0.0000266 0.01242043 0 
Bioregion 3 0.00144462 0.00000665 0.0000110 0.0000308 

 
 
The impact assessment of the subregions revealed that for trawling, subregion 1.2 was the 
most impacted from fishing, followed by subregion 1.1 and subregion 1.7 (Table 2). There was 
minimal impact for subregion 1.3 and 3.1, and no risk for subregions 2.1 and 2.4. For gillnets, 
it was subregion 1.2 the most impacted by this activity, whereas for the remaining bioregions 
the impact was minimal in comparison. The impact of line fishing was evident across all 
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subregions except for subregion 3.1 and minimal for subregion 1.3. The most impacted was 
subregion 1.2, which was twice more impacted than subregion 2.4. Subregion 1.1, subregion 
1.7 and subregion 2.4 were similarly impacted, but the impact was higher in subregion 1.1. 
Finally, the impact of fishing with traps was generally very low and negligible for all 
subregions. 
 
 

Table 2. Fishing intensity impact index for the second-level subregions of the bioregionalization 
analysis. 

 

  Trawling Gillnets Lines Traps 

Subregion 1.1 0.04230372 0 0.04303634 0.00248335 
Subregion 1.2 0.17426158 0.27705476 0.2186114 0 
Subregion 1.3 0.00563023 0 0.0000291 0 
Subregion 1.5* --- --- --- --- 
Subregion 1.7 0.03609041 0 0.01664393 0.0000237 
Subregion 2.1 0 0 0.01066662 0 
Subregion 2.4 0 0 0.10553208 0 
Subregion 3.1 0.00096655 0 0 0.0000530 
*Subregion 1.5 is not predicted in SIOFA’s Convention Area 
 
 
 

5. Discussion 

In this study we investigated potential SAIs on predicted bioregions based on VME indicator 
taxa for the SIOFA area. We analysed the spatial distribution of fishing in relation to the 
bioregion predictions, the intensity of fishing, and summarised both sources of information 
into an index of fishing intensity impact to quantify the vulnerability of the bioregions against 
each of the four fishing gear types. The overall picture indicates that fishing activities in SIOFA 
occur across all three bioregions, although fishing types are spatially distributed and take 
place differently across subregions. While trawling, gillnet and trap fishing are only present in 
bioregion 1 and bioregion 3, only line fishing is present in bioregion 2. The intensity of fishing 
is also variable per gear type, but we found that, in many subregions, areas with maximum 
fishing intensity coincided with areas of high suitability for subregions. Our analyses suggest 
that bioregion 1 is the most impacted, particularly by trawling, gillnets, and traps fishing. 
Subregion 1.2 is the most impacted by bottom trawling, gillnet, and line fishing, while 
subregion 1.1 is the most at risk by traps.  
 
Spatial distribution and intensity of fishing in SIOFA 
 
SIOFA’s report2 on the overview of its fisheries state the occurrence of fishing activities up to 
~ 2000 m water depth. Our first-level bioregions represent the main depth and climatic zones 

 
2 https://siofa.org/sites/default/files/files/Overview%20of%20SIOFA%20Fisheries%202022_0.pdf 
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found in SIOFA (Ramiro-Sánchez & Leroy, 2022), where bioregion 1 dominates the shelf and 
bathyal depths (Figure A2, Annex A). Accordingly, fishing activities were found to be more 
prevalent in this bioregion than in bioregion 3, for instance (see Figure 4 – Figure 7). Bioregion 
2 also had a distribution at bathyal depths (Figure A2, Annex A); however, this bioregion 
characterized the subantarctic zone (Figure A4, Annex A), where different environment 
characteristics prevail that result in different fish distributions and, as such, in different 
fisheries. Thus, first-level bioregions offer a complete overview of the distribution of fishing 
activities in SIOFA, in turn reflecting the different fisheries taking place in each management 
subarea.  
 
The extent of the spatial distribution of the predicted subregions will determine the impacts 
of a concentrated fishing footprint and a varying fishing intensity. Subregion 1.1 displayed 
fishing activity by all gear types except for gillnets, with the highest fishing intensity classes 
taking place in areas highly suitable for the subregion (first panel in Figure 8 – Figure 11). 
Subregion 1.1 has a relatively small, predicted area in the northwest of SIOFA’s Convention 
Area (Figure 2) and given its proximity to EEZs, it would be appropriate to consider additional 
impacts from bordering fishing nations in the area. In addition, a spatial exploration of SIOFA’s 
observers’ data (2017 – 2020) revealed large bycatch of sponges in that area (30 - 200 kg), 
highlighting the potential importance of the subregion for VME indicator taxa. 
 
Subregion 1.2 had all its maximum suitability classes fished by all gears except for traps 
(second panel in Figure 8 – Figure 11). Notably, it was the top 20% fishing intensity class that 
always occurred in areas of highest moderate suitability (the maximum suitability for this 
subregion). This subregion is predicted over plateaus and shallower areas of SIOFA (mostly 
shelf and upper bathyal depths, 200-800 m; Figure A3, Appendix A), mainly from 20°S to 40°S 
and with a maximum suitability of ~ 750 (Figure 2), which coincides with SIOFA’s fishing 
footprint at those latitudes. Thus, placed in the context of the maximum suitability predicted 
for this subregion, our analysis indicates that subregion 1.2 could indeed be heavily fished.  
 
Subregion 1.3 was mainly affected by bottom-trawl fishing (third panel in Figure 8 – Figure 
11). Although with very few events, including the highest intensity fishing classes, it took place 
in areas of high suitability for the subregion. Subregion 1.3 prediction is localised on the 
southwestern tip of SIOFA and over the Agulhas Plateau, where it shows maximum suitability, 
covering all bathyal depths (200 – 3500 m). There are some areas with moderate suitability 
eastwards along the 40°S latitude. Although few high intensity events occur on the areas of 
maximum suitability, it will require careful examination and interpretation since, similar to 
subregion 1.1, subregion 1.3’s proximity to EEZs may exacerbate potential impacts to the 
subregion from bordering fishing nations. 
 
Subregion 1.7 was mainly occupied by bottom-trawl and line fishing, but most of the fishing 
events, including the high intensity classes, occurred in areas predicted as of low suitability 
(fifth panel in Figure 8 – Figure 11). This subregion had its maximum suitability of prediction 
in the bathyal depths of the south of Australia. However, due to the strong eddies that spin 
off in the western south tip of Australia, water masses are carried out westward reaching the 
western Indian Ocean and potentially favouring the presence of subregion 1.7 along the 35°S 
- 40°S latitudes. Within SIOFA, it is on the westernmost part of the Southwest Indian Ocean 
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Ridge where we can find the maximum suitability for this subregion, outside the northeast of 
Saint Paul and Amsterdam’s EEZ. 
 
Subregion 2.1 and subregion 2.4 were solely affected by line fishing but, in both subregions, 
this activity occupied mostly areas of moderate to high suitability, including one third of the 
high fishing intensity classes (sixth and seventh panels in Figure 8 – Figure 11). Both 
subregions have a subantarctic distribution, where subregion 2.1 displays maximum 
suitability from 45°S to 50°S latitude, and subregion 2.4 from 50°S to 60°S west of 80°E and 
below 60°S east of 80°E. Within SIOFA, however, predictions are relatively small and localised 
(Figure 2), especially subregion 2.4, which only has a very small area predicted within SIOFA 
east of the Kerguelen Plateau. Fishing is also concentrated in that area; therefore, these 
subregions require careful consideration of protection, particularly so, because of fishing 
activities occurring within the bordering EEZ. 
 
Finally, subregion 3.1 was mostly impacted by all fishing intensity classes of bottom-trawling, 
which occurred in areas of moderate to high suitability for the subregion (eighth panel in 
Figure 8 – Figure 11). This was the most unexpected finding because subregion 3.1 was 
described as strictly abyssal (Figure A3, Appendix A), and SIOFA’s fisheries reports state fishing 
occurring at much shallower depths (~ 1500 m). We attribute this apparent inconsistency of 
potential fishing at depths > 2000 m in subregion 3.1 to the 1° latitude-longitude spatial 
resolution at which we carried out the bioregionalization analysis. The use of grid cells (pixels) 
at coarse resolution involves aggregating species data from multiple depths. As such, it is very 
likely that species from bathyal depths and species from the bordering abyssal depths have 
been clumped together in the same grid cell despite the bathyal and abyssal depth zones 
constituting fundamentally different habitats. This is an intrinsic disadvantage of using the 
“group first, then predict” modelling approach, which we extensively discussed in the report3 
for project PAE2020-02 (Ramiro-Sánchez & Leroy, 2022). Nevertheless, even though the 
network approach could only detect one subregion, bioregion 3 also encompasses bathyal 
depths (Figure A2, Appendix A). Thus, habitats of bioregion 3 are, in fact, trawled (Figure 4).  
 
Fishing intensity impact index 
 
The fishing intensity impact index reflected the trends observed in the analysis of the spatial 
distribution (in what suitability classes) and intensity (high or low number of fishing events) 
of fishing across regions. Bioregion 1, with a wide distribution across SIOFA and representing 
the bathyal depths of the Indian Ocean (Figure 1), was the most affected by trawling, gillnets, 
and line fishing. Bioregion 2, with a subantarctic distribution, was the next most affected by 
traps fishing. Because of the large predictions in SIOFA of each bioregion, the impact index 
was affected by the large proportion of unfished areas relative to the fished areas (i.e., index 
values were very low). The analysis of the subregions allowed to refine our understanding of 
the potential fishing impacts within the bioregions. 
 
The occurrence of fishing in a consistent manner over areas of moderate suitability has a 
higher impact than few high intensity events occurring in areas of high suitability. This is the 
case for subregion 1.1 and subregion 1.2. Subregion 1.2 was the most impacted from trawling, 

 
3 https://siofa.org/sites/default/files/files/VMEMapping_FullReport.pdf 
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gillnets, and line fishing (Table 2), with all its maximum suitability classes (moderate classes) 
consistently fished at all fishing intensity levels (second panel in Figure 8 – Figure 11). The risk 
is especially significant for areas with gillnet fishing, as fishing appears to be extremely 
spatially concentrated in this subregion compared to the other subregions. In contrast, 
subregion 1.1, which is also fished at all intensities (first panel in Figure 8 – Figure 11), has 
higher predicted suitability classes (> 600) in SIOFA than subregion 1.2. However, it is four 
times at lower risk than subregion 1.2 (Table 2). This may seem surprising because subregion 
1.1 has a narrower distribution than subregion 1.2 in SIOFA. However, because all of the 
maximum suitability classes of subregion 1.2 and pixels are being intensely fished, this results 
in a higher impact than for subregion 1.1. 
 
The fishing intensity impact index will be exacerbated if a bioregion is disproportionately 
fished over its area (i.e., if the proportion of fished pixels over unfished pixels is high). For 
instance, subregion 2.4 was the second subregion most at risk by line fishing. Its reduced, 
predicted area within SIOFA and the occurrence of fishing in a large proportion of its areas of 
moderate suitability seem to be responsible for the vulnerability of this subregion. In contrast, 
subregion 2.1 has a wider predicted distribution (Figure 2). Yet, it displayed a similar 
distribution of the fishing intensity classes over the suitability classes, which also included a 
similar range of classes to those of subregion 2.4 (Figure 10). As a result, the difference in the 
index is ten times higher for subregion 2.4 than for subregion 2.1. 
 
For some bioregions it will be important to take into consideration the potential effect of 
cumulative impacts from bordering nations; even for static gears like traps, which have less 
physical impact on the seabed than mobile gears. Subregion 1.1 and subregion 2.4 are good 
examples of potential cumulative impacts; SIOFA’s fishing footprint occurs spatially 
concentrated in these subregions along the limits of SIOFA’s area of competence. Thus, 
ensuring spatial connectivity among predicted areas may play a key role in future habitat 
recovery.  
 
The interpretation of the fishing intensity impact index should go hand in hand with the 
understanding of the bioregionalization predictions (see Ramiro-Sánchez & Leroy, 2022). 
First, it is important to remember that only the predictive models of first-level bioregions 
were evaluated, whereas the models of the second-level subregions did not have enough 
occurrences to be evaluated via cross-validation: subregions represent only a small 
proportion of first-level bioregions whose detection depends on having sufficient species 
data. As a result, the validity of the nested levels remains uncertain to some extent, although 
their biogeographic patterns are supported by the distribution of water masses and ocean 
currents and by other biogeographic studies. Second, the possibility of overprediction exists 
for some subregions such as for subregion 2.1 and subregion 2.4, whose predictions were 
driven by the strong imprint of certain features, such as the Polar Front, the Subantarctic 
Front, and the Subtropical Front. The salinity and density properties drove the subregion 
predictions; however, it is unclear whether habitats of subregion 2.1 will occur at the depths 
of the Southeastern Indian Ridge, for instance. Finally, subregion 1.7 might not exist in SIOFA. 
This subregion was detected at bathyal depths of south of Australia and predicted westwards 
following the imprint of marked mesoscale eddies that shed from the Leewin Current along 
the band of the Eastern Gyral Current (Talley et al., 2011). Since no bioregion occurrences 
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were observed on the western Indian Ocean, the prediction of subregion 1.7 seemed to be 
driven by environmental conditions there too (Ramiro-Sánchez & Leroy, 2022).  
 
Ideally, an index would integrate the six factors suggested by the FAO guidelines to determine 
the scale and significant of an impact, including knowledge of both gear selectivity and 
efficiency to draw conclusions from catch data. The integration of the last three FAO factors 
requires an in-depth knowledge of a species’ biology, which includes the sensitivity of the 
species to the pressure in question. Our fishing impact index integrates not only the spatial 
distribution of fishing (i.e., whether it occurs in one bioregion or another), but also the 
intensity of fishing weighted by the suitability class of the bioregion where it is happening 
(vulnerability). In areas with robust sampling, other indices have been developed that, based 
on biological trait analysis, quantify the vulnerability of a species to trawling (González-Irusta 
et al., 2018) or longlining (de la Torriente Diez et al., 2022). At a global scale, Clark and 
Tittensor (2010) developed a risk index that quantified the vulnerability of seamounts using 
predictions of stony corals on seamounts and the likely distribution of seamount fish, 
informed by bottom-trawl fishery catches on seamounts and fisheries impacts.  
 
At last, the fishing effort used for this study constitutes the cumulative fishing effort involving 
historical data. It may be the case that some of the patterns observed are relicts. In our index, 
the use of ranks to class fishing intensities prevents assigning a disproportionate weight to 
potential outliers, as it would be the case if the index used absolute numbers (i.e., original 
numbers). Yet, SIOFA will need to investigate and consider such possible discrepancies. The 
use of objective 10% quantiles as a basis for the ranks will permit the continuous update of 
the index results as more fishing data and better bioregion predictions become available. 
Furthermore, this index can be used to explore the impacts of management measures, such 
as how limiting or fostering fishing in a particular area would affect the significant adverse 
impacts for a given region. 
 
 

6. Conclusions  

In this report, we summarised how fishing activities may be impacting predicted bioregions 
of vulnerable marine ecosystem indicator taxa in the SIOFA area. Ideally, we would expect to 
observe higher fishing effort in areas of predicted low suitability for bioregions, potentially 
indicating a low impact. However, we found that for all four gear types and all bioregions, 
there was fishing occurring in predicted areas of high suitability. Bioregion 1 was the most 
impacted by trawling, gillnets, and line fishing. The marked spatial distribution of the four 
gear types in SIOFA results in subregions being affected differently by each gear type, where 
subregion 1.2 seems to be the most impacted from trawling, gillnets, and line fishing and 
subregion 2.4 by traps fishing. For the subregions, the interpretation of the index results will 
have to take into consideration the uncertainties of the predictions, particularly for subregion 
2.1, subregion 2.4, and subregion 1.7. In addition, potential cumulative impacts, such as 
fishing along SIOFA’s edges from bordering nations, will also need to be considered in order 
to ensure connectivity between and within bioregions to maintain populations. Therefore, 
the index offers a first approximation to assess potential impacts of fishing on the bioregions 
for each gear type. As new data becomes available in the form of better bioregion predictions 
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and fishing effort, the index can be updated. In combination with SIOFA’s expert knowledge 
of their fisheries and area of competence, the index can be used to highlight particular areas 
of conservation interest around ambiguous areas and explore impacts of management 
measures.  
 
 

7. Recommendations 

We recommend the Scientific Committee to: 
• Note the development of the fishing intensity impact index to aid in the consideration 

of bioregions (and specific areas within) potentially more impacted from fishing 
activities and the potential to update the index as new data becomes available. 

• Note the potential risk of Bioregion 1 from fishing impacts, and particularly the risk of 
subregion 1.2. 
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Appendix A – Bioregionalization method “Group first, then predict” 

Overview of the methods and description of bioregions 
 
We summarise the procedure as follows:  
(1) we delineated biogeographical regions at the species level using a network approach, on 
the basis of occurrence datasets, at a 1° x 1° spatial resolution;  
(2) once we identified the bioregions, we individually modelled the relationship between each 
VME bioregion and environmental predictors using an ensemble modelling approach based 
on seven algorithms, obtaining predictive suitability maps for each bioregion; 
(3) based on the suitability maps for each region, we identified in each pixel the bioregion 
most likely to occur.  
 
To calibrate the bioregion distribution models, we used as presence data the known pixels of 
the regions, and as absence data the known pixels for other biogeographical regions. To 
evaluate the predictive accuracy of bioregion distribution models, we applied a block cross-
validation procedure to limit over-optimistic performance evaluations due to autocorrelation 
between calibration and evaluation data. We did not apply block cross-validation for the sub-
bioregions because the lack of data prevented such a procedure. 
 
We detected two nested levels of biogeographical regions with the network approach. At the 
first level, we detected three large biogeographical regions in the Southern Indian Ocean 
(Figure A1-A). These three biogeographical regions were geographically cohesive, they had 
distinct species composition, and occurred at different depth zones and environmental 
conditions. In summary, Cluster 1 had a median depth range spanning from shallow waters 
to 2,800 m, Cluster 2 had a deeper median depth of ~ 2,000 m, and Cluster 3 was present in 
the lower bathyal (> 800 m) and abyssal areas (Figure A2).  
 
Nested at a second level, we detected eight subregions: Cluster 1 subdivided into five 
subregions (1.1, 1.2, 1.3, 1.5 and 1.7), Cluster 2 into two subregions (2.1 and 2.4), and Cluster 
3 into one subregion (3.1) (Figure A1-B). Cluster 1.1 had a median depth of 1,000 m, with 
spanning depths from 200 to 2,700 m; Cluster 1.2 had 75% of its observations in waters above 
1,500m, with a median depth of 800 m and a maximum depth of 3,000 m; Cluster 1.3 (Figure 
A3) had a median depth of 400-500 m, ranging from 200 to 2,700 m; Cluster 1.5 had a shallow 
median depth of 200 m; Cluster 1.7 had a median depth of 400 m, with a maximum of 1,800 
m; Cluster 2.1 had a median depth of 600 m, with depths spanning from 200 to 1,500 m; 
Cluster 2.4 was a deep cluster with a median depth of 2,900 m, where 50% of the observations 
fell between 2,100 and 4,000 m; Cluster 3.1 was the deepest of all subregions with a median 
depth of 5,000 m (Figure A3).  
 
The predictive map of bioregions at the first level showed that the three bioregions 
encompassed the SIOFA area (Figure A4). Bioregions 1 and 3 prevailed from 20°N to 10°S 
latitude and below 40°S latitude, the Southern Ocean bioregion 2 dominated. We added on 
the map the degree of uncertainty (index of confidence from 0 to 1, see methods on report 
on project PAE2020-02) that we had in our predictions, such that we are less confident of 
predictions in darker areas. These areas are uncertain because none of the samples we 
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gathered were located in similar environmental conditions – thus, model predictions in these 
areas are extrapolations. Areas of uncertainty in predictions coincide with areas of 
heterogeneity in biogeographical composition and with areas where there was no initial data. 
We modelled the distribution of the eight detected subregions, although no formal evaluation 
of the model performance was carried out for predictions because of the low number of 
occurrence points. As for bioregions at the first level, we incorporated confidence levels in 
the predictions. Individual predictions are presented in Figure A5. 
 
Bioregions at the first level depict the distribution of fauna across two distinct environments, 
the bathyal and abyssal depth zones, and a specific Southern Ocean bioregion. As discussed 
in the report for project PAE2020-02, existing global biogeographical classifications for the 
Southern Indian Ocean reflect these depth zones, specifically the Global Open Oceans and 
Deep Seabed (GOODS) classification. The subregions we detected further improve that 
scheme, reflecting the importance of water masses and topographic features in the Southern 
Indian Ocean. In the report, we extensively elaborated on the characteristics and drivers of 
each of the eight subregions and how these are supported by the literature. For this reason 
and because they provide a finer understanding of biogeographic patterns in the Southern 
Indian Ocean, we used this level to compare the overlap with existing fisheries within SIOFA’s 
Convention Area. 
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Figure A1. Biogeographical regions (clusters) of VME indicator taxa in the Southern Indian Ocean: (A) 
Three biogeographical regions of similar species composition detected at the first hierarchical level. 
(B) Finer sub-biogeographical regions detected at the second hierarchical level; black indicates no 
assigned subregion.  
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Figure A2. Environmental variables distribution for each of the three main biogeographical observed 
regions detected at the first hierarchical level of the bioregionalization analysis. Small clusters 
(labelled ‘small’ in the graph) are also shown for comparison. Variables from top left to bottom right: 
depth (m); depth Shannon index; salinity (PPS); silicate concentration (mol m-3); speed of currents 
(m-1); dissolved molecular oxygen (mol m-3); temperature (°C); surface primary productivity (g m-3 
day-1); terrain ruggedness index (TRI); TRI Shannon index; percentage of shelf depth zone (0 – 200 m) 
covered; percentage of upper bathyal depth zone (200 – 800 m) covered; percentage of lower 
bathyal depth zone (800 – 3,500 m) covered; percentage of abyssal depth zone (3,500 – 6,500 m) 
covered. Differences between subclusters per environmental variable are shown through pairwise 
comparisons (post-hoc Tukey test) with letters on the boxplots: mean values with at least one 
common letter are not significantly different. From the report on project PAE2020-02, Figure 7. 
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Figure A3. Environmental variables distribution for each of the eight nested biogeographical regions 
detected at the second hierarchical level of the bioregionalization analysis. Small clusters (labelled 
‘small’ in the graph) are also shown for comparison. Variables from top left to bottom right: depth 
(m); depth Shannon index; terrain ruggedness index (TRI); TRI Shannon index; percentage of shelf 
depth zone (0 – 200 m) covered; percentage of upper bathyal depth zone (200 – 800 m) covered; 
percentage of lower bathyal depth zone (800 – 3,500 m) covered; percentage of abyssal depth zone 
(3,500 – 6,500 m) covered. Differences between subclusters per environmental variable are shown 
through pairwise comparisons (post-hoc Tukey test) with letters on the boxplots: mean values with at 
least one common letter are not significantly different. From the report on project PAE2020-02, 
Figure 9. 
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Figure A4. Predicted biogeographical regions of VME indicator taxa in the Southern Indian Ocean at 
the first level of the hierarchy of the bioregionalization analysis. Areas with low confidence in the 
prediction are shown in darker shades of grey.  
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Figure A5. Predicted biogeographical regions of VME indicator taxa in the Southern Indian Ocean at 
the second level of the hierarchy of the bioregionalization analysis. Areas with low confidence in the 
prediction are shown in darker shades of grey. Note that, because of the low number of points, we 
could not reliably evaluate these predictions. 

 
 



Appendix B – Proportion of fished cells per habitat suitability class 
and gear type 
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Table B1. Proportion of fished and non-fished cells per habitat suitability (HS) class per bioregion and 
gear type. 

    Bioregion1 Bioregion2 Bioregion3 
   HS class Fished Non-fished Fished Non-fished Fished Non-fished 
  [0,100] 0 9552 894 72554 688 37770 
  (100,200] 10 7600 0 5173 134 12524 
  (200,300] 7 6913 0 1848 27 6997 
  (300,400] 2 8865 1 1486 15 6666 
Trawling (400,500] 6 10316 0 946 10 6945 
  (500,600] 9 10982 0 970 5 6800 
  (600,700] 14 10433 0 1212 2 8156 
  (700,800] 31 14292 0 1625 12 7052 
  (800,900] 119 10015 0 7054 2 1780 
  (900,1000] 697 5722 0 1822 0 0 
    Bioregion1 Bioregion2 Bioregion3 
   HS class Fished Non-fished Fished Non-fished Fished Non-fished 
  [0,100] 0 9552 171 72554 173 37770 
  (100,200] 0 7600 5 5173 3 12524 
  (200,300] 0 6913 0 1848 0 6997 
  (300,400] 0 8865 0 1486 0 6666 
Gillnets (400,500] 0 10316 0 946 0 6945 
  (500,600] 0 10982 0 970 0 6800 
  (600,700] 0 10433 0 1212 0 8156 
  (700,800] 0 14292 0 1625 0 7052 
  (800,900] 6 10015 0 7054 0 1780 
  (900,1000] 170 5722 0 1822 0 0 
    Bioregion1 Bioregion2 Bioregion3 
   HS class Fished Non-fished Fished Non-fished Fished Non-fished 
  [0,100] 46 9552 206 72554 391 37770 
  (100,200] 41 7600 17 5173 4 12524 
  (200,300] 16 6913 0 1848 0 6997 
  (300,400] 19 8865 24 1486 0 6666 
  (400,500] 26 10316 0 946 0 6945 
Lines (500,600] 5 10982 26 970 0 6800 
  (600,700] 2 10433 0 1212 0 8156 
  (700,800] 17 14292 63 1625 0 7052 
  (800,900] 20 10015 13 7054 0 1780 
  (900,1000] 203 5722 46 1822 0 0 
    Bioregion1 Bioregion2 Bioregion3 
   HS class Fished Non-fished Fished Non-fished Fished Non-fished 
  [0,100] 0 9552 6 72554 3 37770 
  (100,200] 0 7600 0 5173 1 12524 
  (200,300] 0 6913 0 1848 0 6997 
  (300,400] 0 8865 0 1486 0 6666 
Traps (400,500] 0 10316 0 946 1 6945 
  (500,600] 2 10982 0 970 1 6800 
  (600,700] 0 10433 0 1212 0 8156 
  (700,800] 0 14292 0 1625 0 7052 
  (800,900] 0 10015 0 7054 0 1780 
  (900,1000] 4 5722 0 1822 0 0 


