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Abstract

We applied a deep-learning approach in order to develop a neural network able to detect and
identify macro-invertebrate organisms within images of benthos bycatch collected in the Southern
Ocean. We used the Faster RCNN architecture and fine-tuning approach. To perform the transfer-
learning, we used an annotated dataset of 59,756 images of organisms identified within 1,845
images of lots, covering eleven taxa: Echinodermata, Asteroidea, Arthropoda, Annelida, Chordata,
Hemichordata, Cnidaria, Porifera, Bryozoa, Brachiopoda and Mollusca. The resulting network, not
yet efficient enough to obtain precise identifications, is able to provide detection and

classification of organisms with a good level of accuracy considering the limited quality of the
images used for training. We present this study as a proof of concept for teams involved in the
management of collections of macro-invertebrate images.
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INTRODUCTION

Abstract. — We applied a deep-learning approach in order to develop a neural network able to detect and iden-
tify macro-invertebrate organisms within images of benthos bycatch collected in the Southern Ocean. We used
the Faster RCNN architecture and fine-tuning approach. To perform the transfer-learning, we used an annotated
dataset of 59,756 images of organisms identified within 1,845 images of lots, covering eleven taxa: Echinoder-
mata, Asteroidea, Arthropoda, Annelida, Chordata, Hemichordata, Cnidaria, Porifera, Bryozoa, Brachiopoda and
Mollusca. The resulting network, not yet efficient enough to obtain precise identifications, is able to provide
detection and classification of organisms with a good level of accuracy considering the limited quality of the
images used for training. We present this study as a proof of concept for teams involved in the management of
collections of macro-invertebrate images.

Résumé. — Utiliser I’apprentissage profond pour 1'identification automatique d’images de macro-invertébrés
marins issus de captures accessoires de benthos : une preuve de concept.

Nous avons utilisé une technique d’apprentissage profond pour développer un réseau de neurones capable de
détecter et d’identifier des macro-invertébrés au sein d’images de lots d’organismes. Nous avons retenu 1’archi-
tecture Faster RCNN. Pour réaliser le transfert d’apprentissage, nous avons utilisé une collection de 59756 ima-
ges annotées d’organismes détectés et identifiés au sein de 1845 images de lots. Cette collection comprend onze
groupes taxonomiques : Echinodermata, Asteroidea, Arthropoda, Annelida, Chordata, Hemichordata, Cnidaria.
Porifera, Bryozoa, Brachiopoda et Mollusca. S’il n’est pas encore suffisamment performant pour permettre des
identifications fines, le réseau que nous avons obtenu est capable de détecter et classifier les organismes avec un
bon niveau de précision compte tenu de la qualité limitée des images de la base d’entrainement. Nous présentons
cette étude comme une preuve de concept pour les équipes impliquées dans la gestion des collections d’images
de macro-invertébrés et souhaitant implémenter des techniques d’intelligence artificielle.

of real biological neural networks. This approach is suitable
to build predictive tools in scientific contexts where explana-

The use of deep-learning approaches in bio-computing
has considerably increased in the last few years because
of strong improvement of calculation facilities and avail-
ability of massive datasets. This new approach is part of the
machine-learning family of algorithms, i.e. techniques which
commonly used in ecology for modelling species and com-
munity distributions (e.g. Elith ef al., 2008). The main point
distinguishing deep-learning techniques from other artifi-
cial intelligence approaches is the capacity to handle mas-
sive datasets with no need to control the learning process.
The modeller provides the solution to the machine and the
machine recreates an algorithm which is able to find the solu-
tion. The implementation is processed by training artificial
neural networks whose design is inspired by the functioning

tory parameters of a series of observations are unknown or
extremely complex, preventing the possibility to use super-
vised algorithms (for more information see Goodfellow et
al.,2016).

The use of deep-learning in ecology covers various
fields, such as population dynamics, landscape ecology,
functioning of ecosystems or conservation biology (Christin
etal.,2019; Borowiec et al., 2022). Their scale ranges from
the individual level to global, including applications such
as molecular data (Derkarabetian ef al., 2019) or the clas-
sification and analysis of massive bio-acoustic (Mac Aodha
et al., 2018) and image datasets (Hansen et al., 2020). In
the context of the scientific monitoring of the French fish-
eries of the Southern Ocean (Martin et al., 2021), we have
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Deep-learning for benthos automatic identification

Figure 1. — Image of a batch of macro-invertebrate bycatch organ-
isms from Kerguelen Exclusive Economic Zone (Poker 4 survey.

2017), including various species of sponges, ascidians, corals and
echinoderms.

developed a database including 92,447 images of epibenthic
marine macro-invertebrate bycatch organisms (Martin et
al.,2023). This database has been fully annotated, with the
recording of organism identification (varying from species
to phylum level) and a storage structure including images
of lots (Fig. 1) and images of organisms, which have been
obtained by cropping the images of lots (Fig. 2). We decided
to use this original dataset to test the possibility of develop-
ing a neural network able to detect and classify automatically
macro-invertebrates in images of lots. The main issue of this
project was to assess the possibility of using this technology
in a context characterized by the limited quality of raw data
and the complexity of forms to be identified. Various deep-
learning projects demonstrated the possibility of develop-
ing networks able to identify images of organisms (Joly ef
al., 2016; Kérschens et al., 2018; Norouzzadeh et al., 2018;
Willi et al., 2019; Guo et al., 2020).In our project, we had to
face three specific constraints:

— the large diversity of anatomical structures, shapes and
general aspect of the benthic marine macro-invertebrates,
due to the huge diversity of taxa (Fig. 1);

— the possibility of observing strong similarities in the
aspect of organisms belonging to different taxa, due to evo-

Figure 2. — Three images of organisms
obtained by cropping images of lots;
from left to right: Chalinidae (Porifera),
Polyclinidae (Chordata), Hormatidae
(Cnidaria).
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Figure 3. — Image of a batch of macro-invertebrate bycatch organ-
isms from Kerguelen Exclusive Economical Zone (Poker 4 survey,
2017), including corals. a crinoid, an ophiutid, a sea urchin and a
brachiopoda; organisms are incomplete and have been quickly
spread out over a small plate to take the picture.

lutionary convergence affecting their anatomical structures
(Fig. 2);

— the field constraints not allowing controlled conditions
for the photographic capture of organisms, which induces
important limitations for the quality of the images: overlap
between organisms, non-standardized layout of the organ-
isms, limited definition of the images, limited conditions
of lighting, and non-standardized distance, focus and angle
(Fig. 3).

Here, we present the technique we used to address these
issues and the results we have obtained as a proof of concept
for further developments, for the benefits of teams involved
in the curation of databases including images of macro-
invertebrates such as the SealifeBase project (Palomares
and Pauly, 2021).

MATERIALS AND METHODS

The detection network

‘We performed transfer learning through the fine-tuning
of an existing detection network, namely the Faster RCNN
(Region based Convolutional Neural Network) architecture

Cybium [early view]
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(Ren et al., 2015). It was retained due to its efficiency for
objects detection and its flexibility (Ren efal., 2015). A con-
volutional neural network is used to extract features from
input images. Then, proposals (bounding boxes) are gener-
ated by another network (Region Proposal Network, RPN).
Features corresponding to these proposal regions are then
fed to a fully connected classification network for final object
(organisms in our case) identification. Before this classifica-
tion step, the sizes of the bounding boxes proposed by the
RPN are standardized by a ROI (Region Of Interest) pooling
layer. By including the RPN, Faster RCNN constitutes an
improvement compared to the first generation of RCNN net-
works using selective search algorithms to generate proposi-
tions to be classified.

Training of the network

Fine-tuning is a classical approach to adapt a network
trained on generic object databases to databases that are
more specific and may exhibit structures and acquisition
conditions that strongly differ from the initial training data-
base. Such approaches have been regularly used to classify
medical images (Zhou ef al., 2017) or specific object types
(Chu et al., 2016).

Training is processed using the PyTorch (Paszke ef al.,
2019) framework and the Torchvision library (Marcel and
Rodriguez, 2010). The library contains a Faster RCNN net-
work already trained on the dataset COCO (including 330 K
images and 80 classes, see Lin et al., 2014) to the detection
of an important diversity of basic shapes and forms. Mean
values and standard deviation are used for normalization
(three for each colour channel).

The database Bendima (Martin ef al., 2023) was used
for the transfer learning. To train the network, we selected
a set of images collected during scientific surveys in the
Kerguelen Exclusive Economic Zone. We consider this to
be the best available dataset of Bendima regarding quantity
of organisms, diversity of taxa, diversity of shoot-
ing conditions, precision of the identifications and
ecological representativity. The dataset resulting
from this selection consists in 59,756 images of

Deep-learning for benthos automatic identification

on the use of the Cross entropy as a loss function. Optimi-
zation was obtained with an Adam gradient descent (initial
learning rate = 0.0001, during 50 epochs). A second network
(network 2) was obtained with a weighted loss function to
compensate the imbalance of classes, with the same gradient
descent strategy, also during 50 epochs.

Evaluation

To evaluate performances, images from a randomly
selected sample of 245 lots out of 1,845 were used as a
testing dataset. Assessment was performed by calculating
the precision and the recall. Precision indicates the propor-
tion of correct classifications of predicted bounding boxes.
Recall indicates the proportion of well-detected objects.
Indices are calculated as follows: Precision = TP/ (TP + FP)
and Recall = TP/ (TP + FN), where TP = True positive,
FP = False positive, FN = False negative.

RESULTS

The two trained convolutional networks presented con-
trasting detection and classification results. The network 1
reached the highest mean precision value (0.57 vs 0.55)
when the network 2 reached the highest mean recall value
(0.52vs0.41).

Checking the indices for each class of object revealed also
strong divergences in the performance of the two networks
depending of the taxon which was considered (Table I). Net-
work 1 and network 2 both presented the highest perform-
ance for the Echinodermata and Asteroidea object classes
(excepted the mean recall of Echinodermata, which dropped
to 0.38 for network 1, when network 2 reached 0.9). For
both networks, performance then decreased for Arthropoda,
Amnelida and Chordata. Mean precision and mean recall of
network 1 drop to 0 for Hemichordata, Cnidaria, Porifera,

Table I. — Mean values of Precision and Recall obtained for each object class
of network 1 and network 2.

single organisms or colonies (Fig. 2) obtained by Mgaiﬁgr{:srckis}on g:xz;léah Mgai“;r{:é{jszion NI}I:;\:?;; j]
sax.fmg crops extracted from 1 ,845.1mages.of lots Eehinodermma 071 038 073 0.90
(Figs 1, 3). Eleven taxa were considered, includ- Astercides 06 078 067 085
ing ten phyla and one taxonomic class: Echinoder- Arthropoda 0'78 0-40 0-51 0-15
mata, Asteroidea, Arthropoda, Annelida, Chordata, " 0';’ 0-15 0 ; 0.60
Hemichordata, Cnidaria, Porifera, Bryozoa, Bra- ne = - . k
chiopoda and Mollusca. For the computing proc- Chorfiata 0.05 004 0.28 026
ess on which the network training was based, such Helllllcl‘lordata 0 0 0.25 0.60
grouping provided object classes including enough Cnidaria 0 0 0.17 025
contents. Porifera 0 0 0 0
Images from 1,600 lots out of 1,845 were used Bryozoa 0 0 0 0
for the training. Two classification strategies were | Brachiopoda 0 0 0 0
investigated. A first network (network 1) was based Mollusca 0 0 0 0
Cybium [early view] 5
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Figure 4. — Example of detection and classification obtained with
an image of sea stars with network 2; red squares and annotations
have been provided by the computer with no human action.

Bryozoa, Brachiopoda and Mollusca. Network 2 presented
alow performance for Hemichordata and Cnidaria, with low
mean values of precision and recall, which dropped to O for
the four remaining groups. Despite a relatively high variabil-
ity in classification accuracy depending on the taxon, these
results showed that the fine-tuned networks indeed had the
ability to reasonably classify images from the Bendima data-
set, provided that annotated images of the considered taxon
are abundant enough.

Figure 4 shows an example of the use of the network 2,
with detection and classification performed on the image
of a lot containing six Echinodermata organisms from dif-
ferent species, presenting various forms, sizes and colours:
one fragment of an Ophiuroid (the body and basal part of the
arms of a Gorgonocephalus chilensis (Philippi, 1858)) and
five Asteroidea. The network did not detect one of the Aster-
oidea (Pteraster cf affinis Smith, 1876) but well detected
the four others (Porania antarctica E. A. Smith, 1876, Hip-
pasteria cf phrygiana (Parelius, 1768), Bathybiaster loripes
Sladen, 1889 and Diplasterias meridionalis (Perrier, 1875)).
Diplasterias meridionalis was over-detected, with a sec-
ond region partly covering the organism. Gorgonocephalus
chilensis was also over-detected, with two detections of the
full fragment, one detection of the body only and one detec-
tion of the base of one arm. All the detected Asteroidea were
well attributed to the Asteroidea object class. Three detec-
tions of Gorgonocephalus chilensis were rightly attributed
to the Echinodermata. One detection of the full fragment
was false and attributed to the Cnidaria object class.

Figure 5 shows an example of the use of network 2 on the
image of a lot containing one fragment of an Asteroidea (the
body of a sea star, Labidiaster annulatus Sladen, 1889) and
28 Polyclinidae ascidians. Network 2 over-detected Labidi-

Figure 5. — Example of detection and classification obtained with
an image including Ascidians and a sea star with network 2; red
squares and annotations have been provided by the computer with
no human action.

aster annulatus with two detections, both attributed not to
the Asteroidea object class but attributed to the Echinoder-
mata object class, which was less accurate. Only one Ascid-
ian was not detected, and four of them were detected two
times. All the Ascidians were well attributed to the Chordata
object class, excepted three of them resulting from over-
detection: one was attributed to the Cnidaria object-class and
two were aftributed to the Echinodermata object class.
Figure 6 shows an example based on the image of a lot
containing only three organisms, with no overlap: the frag-
ment of an ophiuroid of the genus Ophiura (body and basal
part of the arms), a fragment of a coral and a fragment of

Figure 6. — Example of detection and classification obtained with
an image including an Ophiuroid, a piece of coral and a sea star
with network 2; red squares and annotations have been provided by
the computer with no human action.

Cybium [early view]
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Figure 7. — Example of detection and classification obtained with
an image including Crinoids, a Gastropod and pieces of seaweed
with network 2; red squares and annotations have been provided by
the computer with no human action.

an Ophiuroid, Gorgonocephalus chilensis (body and basal
part of the arms). All three organisms were well detected by
the network. Gorgonocephalus chilensis was detected two
times , both regions covering only a part of the organism. The
three organisms were rightly attributed to the Echinodermata
and Cnidaria object classes.

Figure 7 shows an example based on the image of a lot
containing 15 real organisms of epibenthic macro-inverte-
brates, but with also two pieces of sea weed, one fixed on
a stone. Invertebrates were composed by one Mollusca,
Provocator pulcher R. B. Watson, 1882, and 14 Crinoids,
Promachocrinus kerguelensis. Provocator pulcher was well
detected, but mistaken for an Ascidian and attributed to the
Chordata object class. Only two Crinoids were undetected
by the network, and four of them were over-detected. All
of them were rightly attributed to the Echinodermata object
class, except the over-detections, attributed to the Cnidaria
object class. Moreover, the network has not been confused
by seaweeds and stones, which were not detected as epiben-
thic macro-invertebrate organisms.

DISCUSSION

This first experiment is a success, and a proof of concept
for the use of deep-learning for the treatment of images of
marine macro-invertebrate bycatch. Given the limited quality
of the images used for the training of the networks, the results
in terms of detection and classification are both encouraging.
For now, only detection could be used to develop a tool for
automatic cropping of massive sets of images and to perform
data mining to obtain a preliminary estimation of the number

Cybium [early view]
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of organisms (especially for the most common and abundant
species, for instance the sea stars). The quality of detection
and classification is not yet sufficient enough to extract auto-
matically reliable identifications.

From this experiment, we can first conclude that deep-
learning methods can perform detection and classification
of specimens of marine invertebrates, but under two condi-
tions: the examples of crops representing a given group has
to be numerous and diverse enough. The increase of the size
of Bendima could be a first goal to address this issue (Short-
en and Khoshgoftaar, 2019). Improvements in the learning
strategy should be explored. The available dataset would be
easily enriched without the need of new records by applying
transformations on the images, for instance by rotating or
flipping the crops. This would quickly increase the diversity
of the training dataset, in order to make the deep-learning
process more powerful (Perez and Wang, 2017; Mikolajc-
zyk and Grochowski, 2018; Pacheco and Krohling, 2021).
Moreover, strategies taking advantage of the nested structure
of the classes should be explored. Here, images have been
pooled without considering the nested structure of the data
resulting from the taxonomic ranks. Improvement of the
learning process should be based on the use of the Phylum/
Class/Order/Family/Genus/Species information attached
to each image of organism. Furthermore, additional infor-
mation could be implemented in the learning process, with
complementary annotations of the images (Lopez-Fuentes ef
al.,2017; Pritt and Chern, 2017; Ellen et al., 2019). This may
include information about the quality of the images (e.g. if
the organism is complete or not); anatomical structures (e.g.
which anatomical parts of each organism are visible); or geo-
graphical location and depth, to weight detection probability
by the known distribution of the species.

‘We believe that the main interest of the deep-learning
approach is the possibility of recording the “human brain-
based” process of taxa identification, which is performed
without a computer, just with knowledge and naturalist
skills, by any author of a study. In the future, when such
approach will be improved enough, authors could provide
the recording of their brain-based taxa identification process
within the ‘supplementary materials’ section of an article,
in the form of a trained network stored in a computer file,
contributing to improve reproducibility of the research. Such
recording could be shared with other scientists, to be applied
to other datasets, allowing comparison studies. This possi-
bility would be of interest when recording the brain-based
identification process performed by a specialist in the field
of taxonomy, so that it may be used in the field of ecology.
This could be a suitable solution to complete the barcoding
approach (Hebert ef al., 2003; Ratnasingham and Hebert,
2007) in response to the lack of experts in systematics (Cos-
tello et al., 2013).

SC-10-INFO-10 - Using deep-learning for automatic identification of images of marine benthic macro-
invertebrate bycatch: a proof of concept
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Finally, the recording of a collective brain-based iden-
tification process, based on combined identifications from
many contributors, may allow two primary improvements:

1 —Improved reliability of automatic identification tools
based on such recordings.

2 —The possibility to base organism identifications on a
consensus, which could be an achievement in conservation
contexts involving divergent stakeholders such as conserva-
tion planning studies or protected areas design (Yates and
Schoeman, 2015).
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