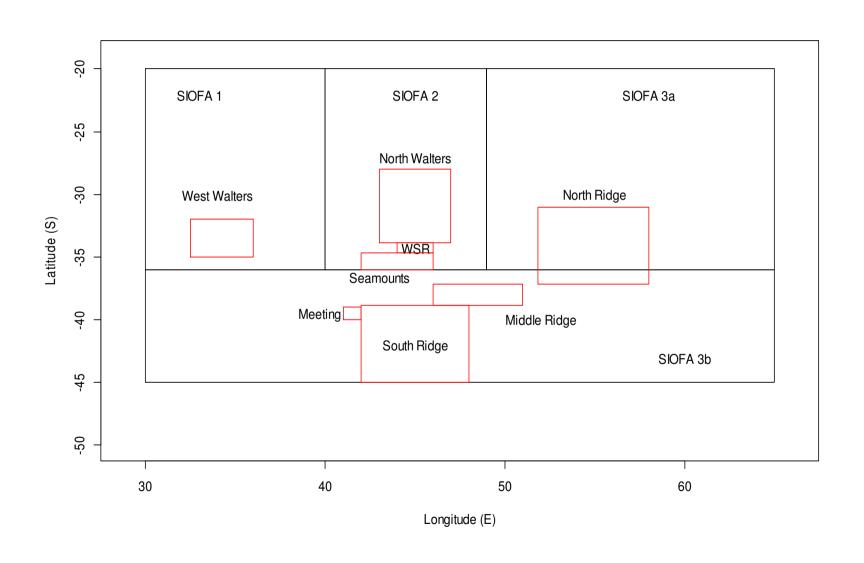
Assessment of orange roughy stocks within SIOFA statistical areas 1, 2, 3a, and 3b

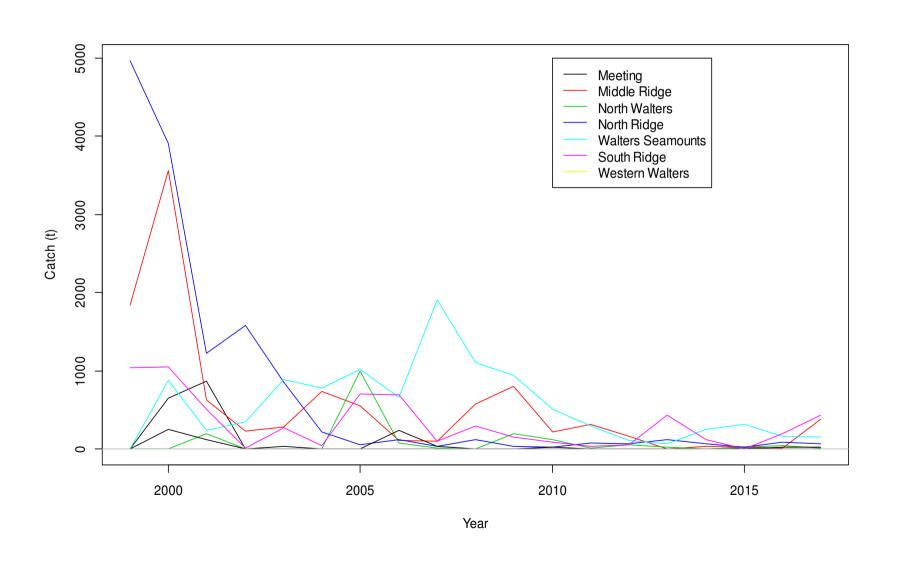
P.L. Cordue, ISL March 2018

Acknowledgements

- Thanks to the Cook Islands delegation for the nomination to do this work and the SIOFA Secretariat for organizing the contract
- Thanks to Graham Patchell for his years of dedicated data collection and analysis that has made these assessments possible
- Thanks to NIWA for the use of their excellent stock assessment package CASAL


Presentation structure

- Introduction
- Methods
 - Stock hypotheses
 - Data
 - Models
 - NZ's Harvest Control Rule (HCR)
- Results
 - Catch-history based method
 - Bayesian MPD estimates


Introduction

- Full Bayesian assessment for Walter's Shoal Region (WSR) already presented
- Now looking at assessments for other stocks (geographical groupings as defined by Graham Patchell) in the SIOFA areas 1, 2, 3a, 3b
- Seven stocks but "Western Walters" has almost no catch and no acoustic estimates – so no assessment attempted
- Six stocks assessed using a catch-history based method
- Three of those six have acoustic estimates and are also assessed with a simple CASAL model and MPD estimates (and borrowing from the WSR assessment)

Methods: stock hypotheses

Methods: data: catch histories

Methods: data: acoustic biomass estimates

- None of the acoustic survey estimates for these areas have been reviewed or revised or refined
- However, estimates from surveys over "large" areas (e.g., more than 20 sq. n.m.) were ignored because of potential double counting issues
- And surveys with very large CVs were ignored (e.g., 60%)
- All surveys were noted to be at "peak spawning"
- Revised estimates (where double counting was not an issue) have **not** been hugely different (a couple higher and a couple lower)

Acoustic estimates: Walters Seamounts

		Low	Middle	High	
Feature	Year	estimate (t)	estimate (t)	estimate (t)	CV (%)
1	2009	240	381	629	55
	2010	847	1345	2219	35
2	2010	2099	3331	5496	18
3	2009	6070	9635	15 898	16

Largest catch: 1907 t (2007)

Total catch: 10 636 t

Acoustic estimates: North Walters

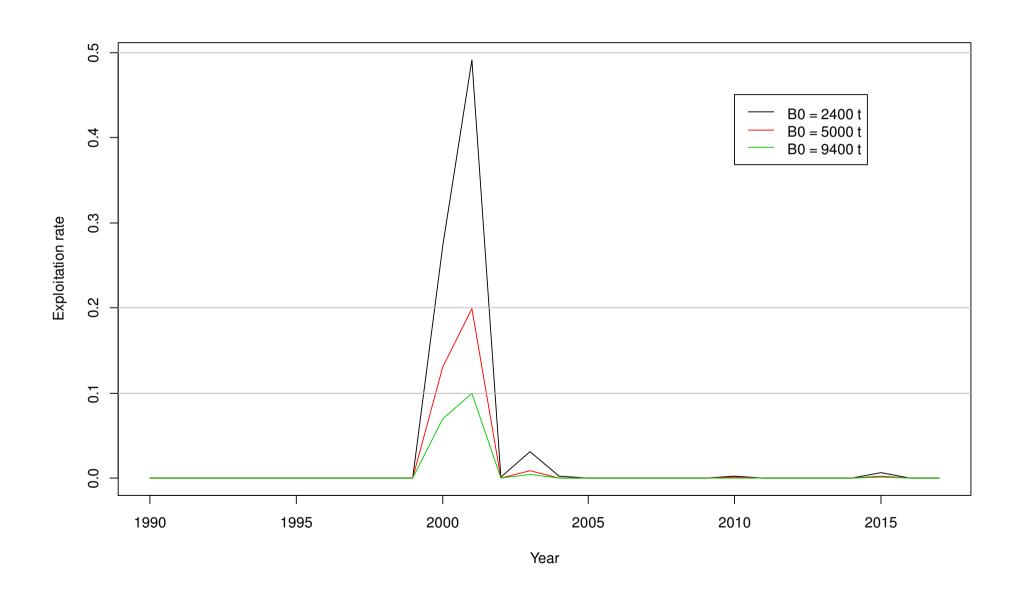
		Low	Middle	High	
Feature	Year	estimate (t)	estimate (t)	estimate (t)	CV (%)
1	2009	3050	4841	7988	36
2	2009	1976	3136	5174	30

Largest catch: 995 t (2005)

Total catch: 1784 t

Acoustic estimates: Middle Ridge

		Low	Middle	High	
Feature	Year	estimate (t)	estimate (t)	estimate (t)	CV (%)
1	2004	5332	8463	13 964	58
2	2004	4342	6892	11 372	26
	2008	1544	2451	4044	37
3	2004	5866	9311	15 363	57
4	2009	4362	6924	11 425	30
	2011	9850	15 635	25 798	34
5	2008	2003	3179	5245	25

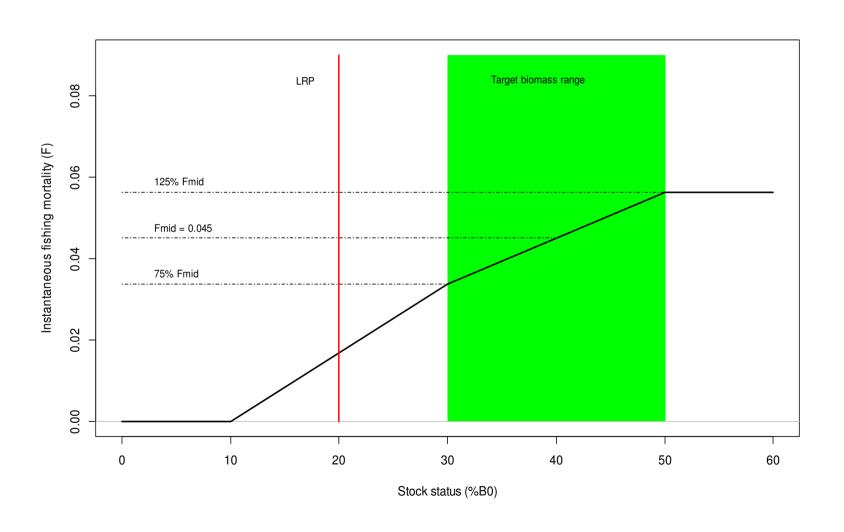

Largest catch: 3563 t (2000)

Total catch: 10 568 t

Methods: models (1)

- Catch-history based method:
 - Single area, single sex, ages (1-120⁺), keeping track of maturity (immature, mature categories)
 - Fishery at the end of the year on spawning fish
 - Length-weight, growth from Sleeping Beauty (results insensitive to these parameters)
 - M=0.045, Beverton-Holt, h=0.75
 - Maturity from WSR middle assessment
 - Three different maximum exploitation rates: 50%, 20%, 10%
 - Calculate the B_0 s which satisfy each maximum exploitation rate (just a manual search running the model at different B_0 s and looking at the annual exploitation rates)

Example of B₀ calculations (Meeting)

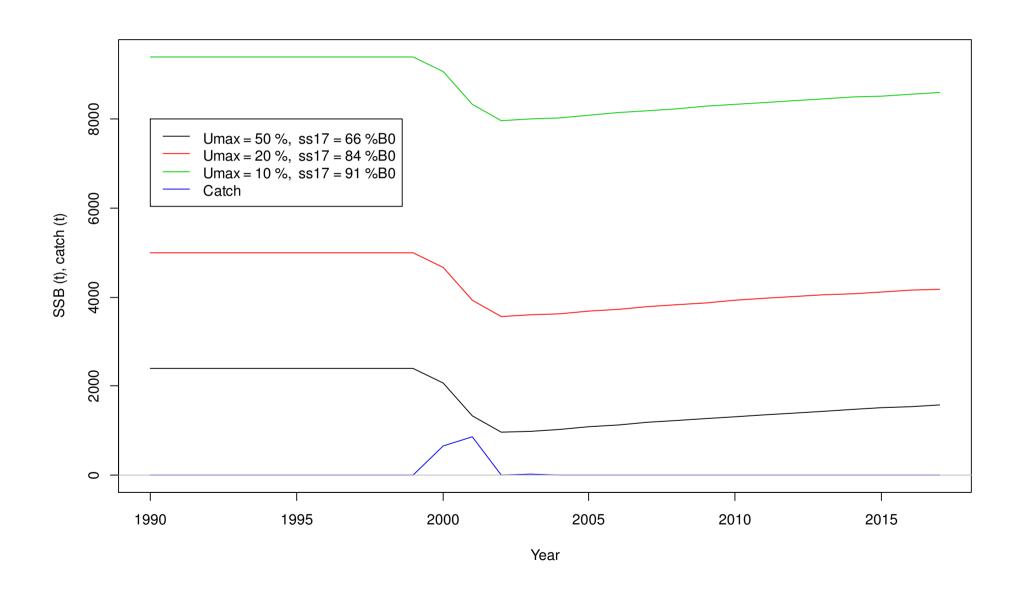

Methods: models (2)

- Bayesian MPD estimates:
 - Single sex, ages (1-120⁺), keeping track of maturity
 - Fishery at the end of the year on spawning fish
 - Migration model (two stocks), single area (one stock)
 - Length-weight, growth from Sleeping Beauty (results insensitive to these parameters)
 - M=0.045, Beverton-Holt, h=0.75
 - Three different treatments of the acoustic estimates: Low, Middle, High
 - Use the WSR estimates for maturity (Low, Middle, High)
 - Use the WSR posteriors of the acoustic q as informed priors for the acoustic q (Low, Middle, and High)

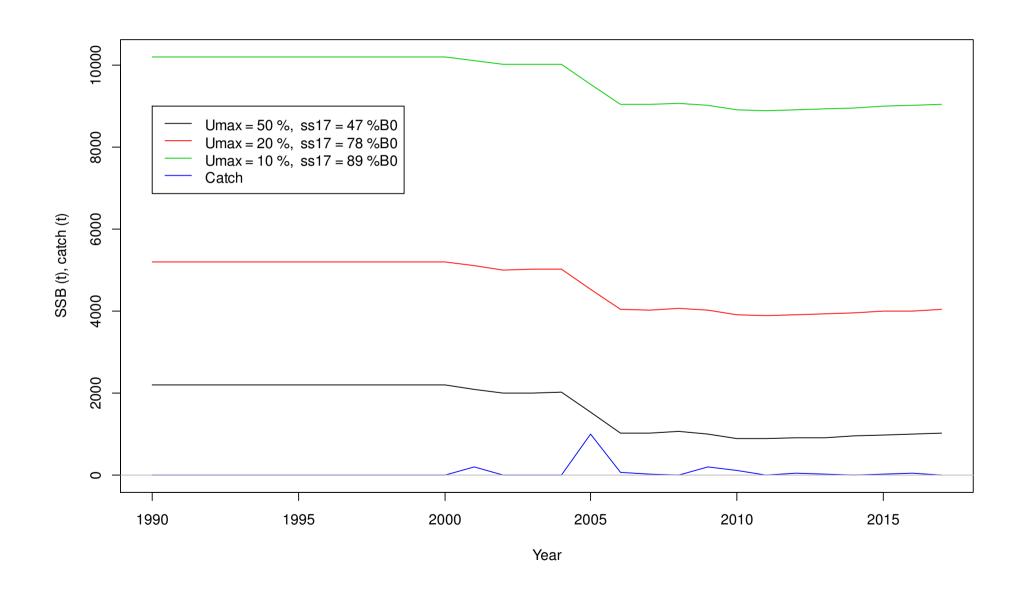
WSR results used in MPD models

		Acoustic q		Maturation
	Mean	CV (%)	a ₅₀	a _{to95}
Low	0.59	18	37	13
Middle	0.70	22	37	14
High	0.76	21	36	13

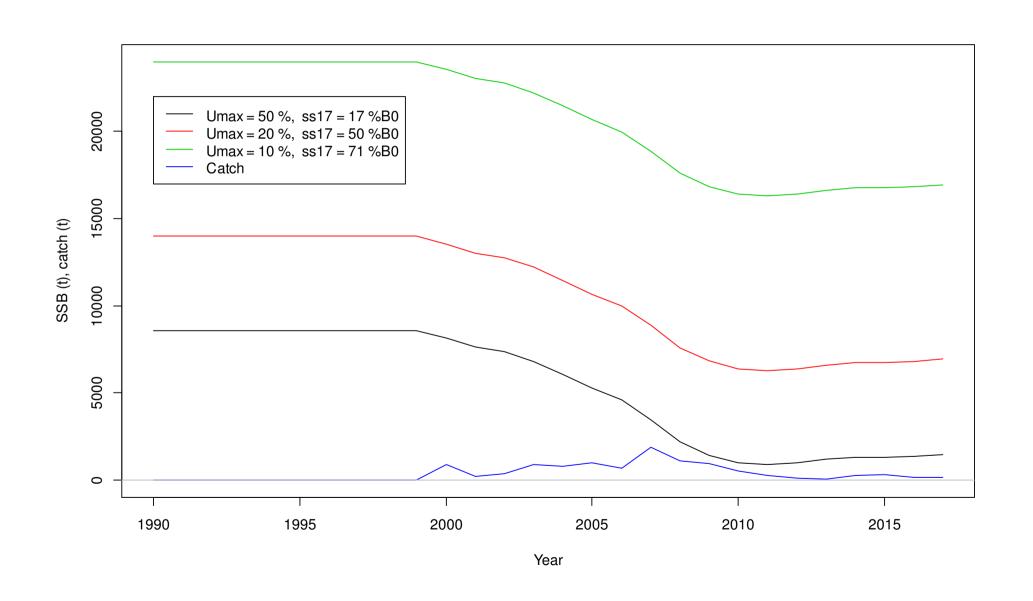
NZ's orange roughy Harvest Control Rule

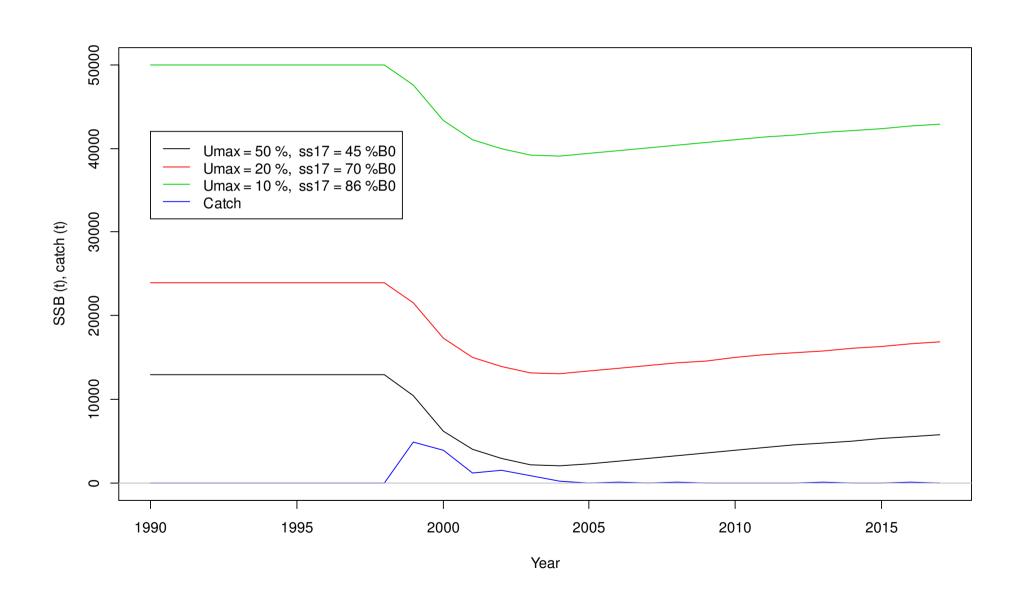

Results

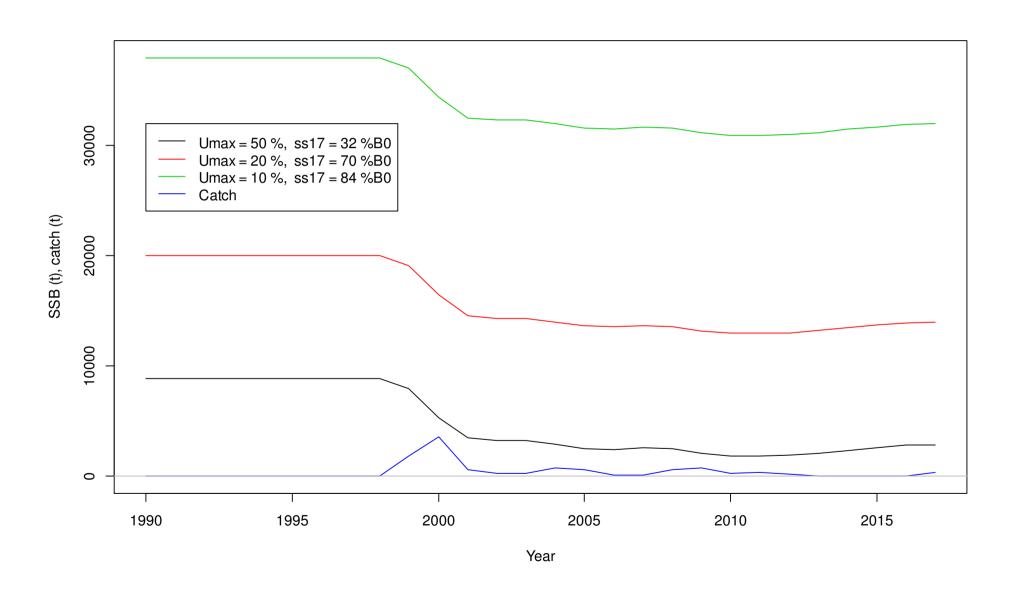
- Catch history based method: for each of 3 maximum exploitation rate:
 - $-B_0$, B_{17} and hence current stock status (B_{17}/B_0)
 - Current stock status feeds into the HCR to give U_{HCR}
 - U_{HCR} \times B_{beg18} = catch limit
- MPD estimates: for each of 3 treatments of the acoustic estimates:
 - As above to get a catch limit based on the MPD estimate of B_0 , B_{17} , stock status, B_{beg18}
- Comparison of the two sets of results for the three stocks with acoustic estimates
- A look at the WSR MPD estimates and catch-history based estimates (in comparison with the Bayesian MCMC estimates)

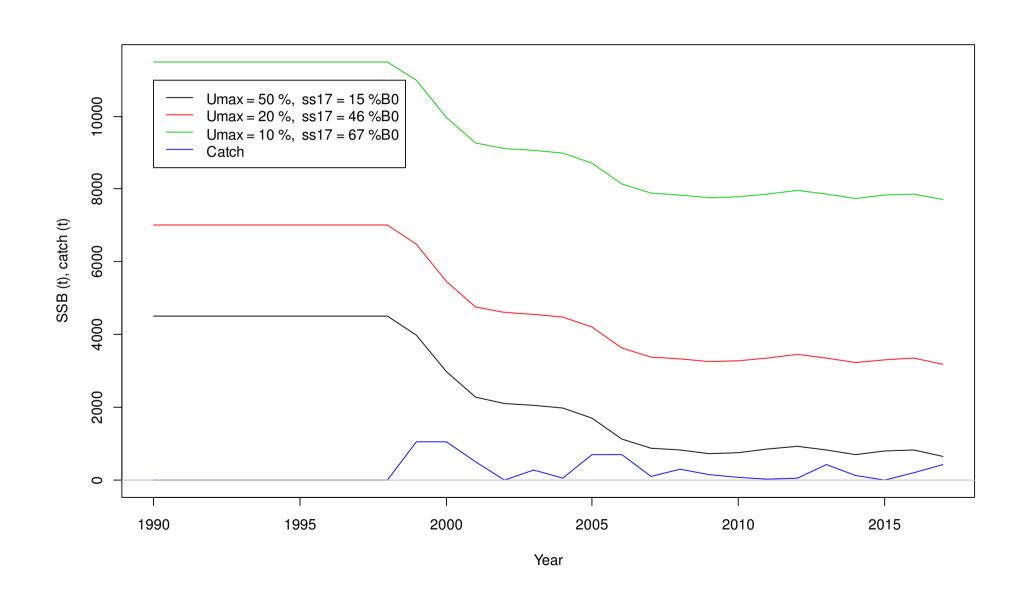

Results: catch-history based method

		B ₀ (000 t)	B ₁₇ (000 t)	B _{beg18} (000t)	ss ₁₇ (%B ₀)	U _{HCR} (%)	Catch (t)
Meeting	U _{max} = 50%	2.4	1.6	1.6	66	5.625	90
	U _{max} = 20%	5.0	4.2	4.2	84	5.625	240
	U _{max} = 10%	9.4	8.6	8.6	91	5.625	480
N. Walters	U _{max} = 50%	2.2	1.0	1.1	47	5.625	60
	U _{max} = 20%	5.2	4.0	4.1	78	5.625	230
	U _{max} = 10%	10.2	9.0	9.1	89	5.625	510
Seamounts	U _{max} = 50%	8.6	1.5	1.7	17	1.240	20
	U _{max} = 20%	14.0	6.9	7.1	50	5.574	400
	U _{max} = 10%	24.0	17.0	17.2	71	5.625	970
N. Ridge	U _{max} = 50%	13.0	5.8	6.1	45	5.020	300
	U _{max} = 20%	24.0	16.9	17.1	70	5.625	960
	U _{max} = 10%	50.0	43.0	43.1	86	5.625	2420
M. Ridge	U _{max} = 50%	8.9	2.8	2.9	32	3.600	100
	U _{max} = 20%	20.0	14.0	14.1	70	5.625	790
	U _{max} = 10%	38.0	32.0	32.1	84	5.625	1800
S. Ridge	U _{max} = 50%	4.5	0.7	0.6	15	0.800	5
	U _{max} = 20%	7.0	3.2	3.1	46	5.130	160
	U _{max} = 10%	11.5	7.7	7.6	67	5.625	430


Catch-history based: Meeting

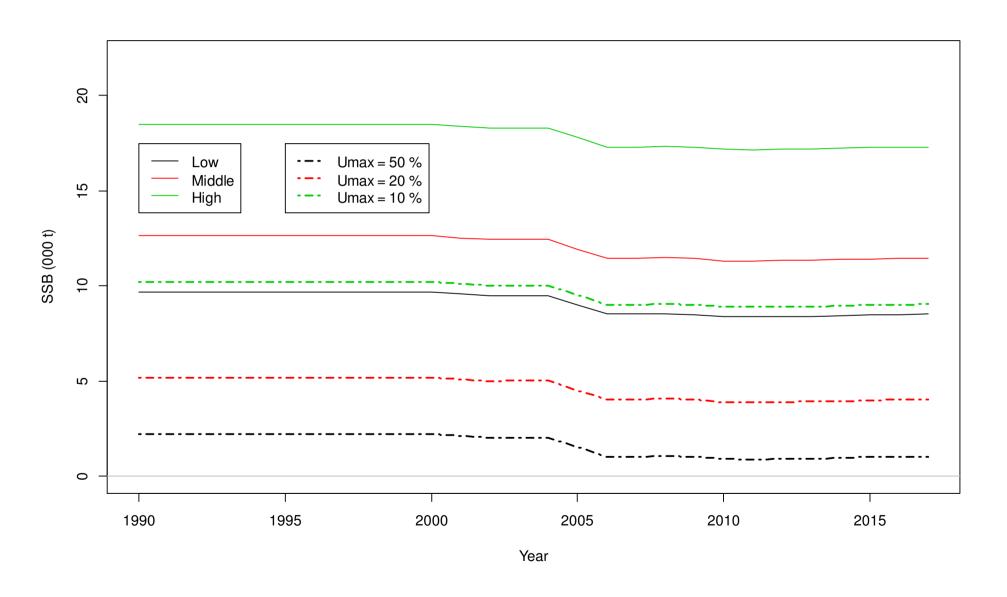

Catch-history based: North Walters


Catch-history based: Seamounts

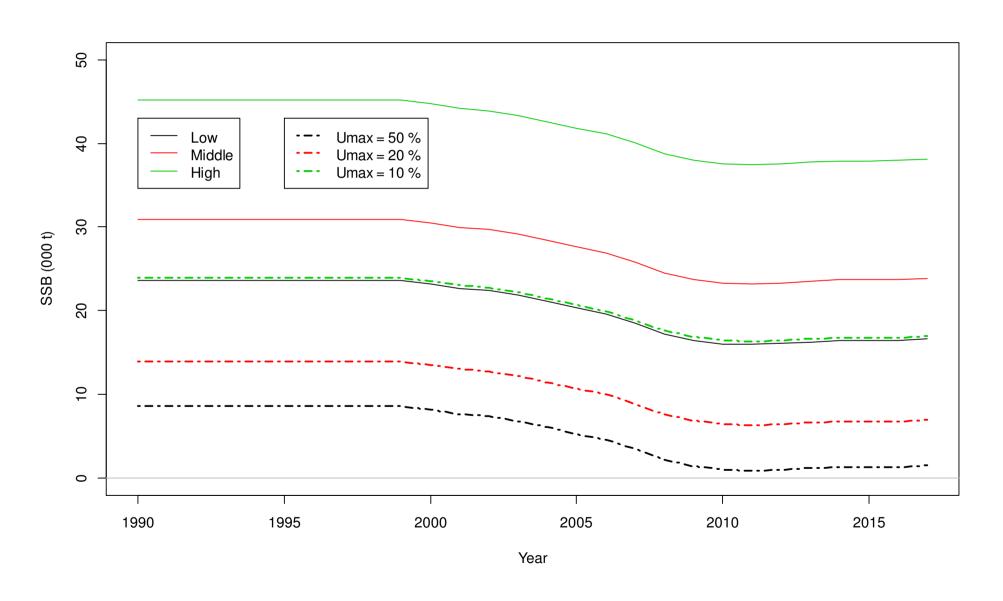

Catch-history based: North Ridge

Catch-history based: Middle Ridge

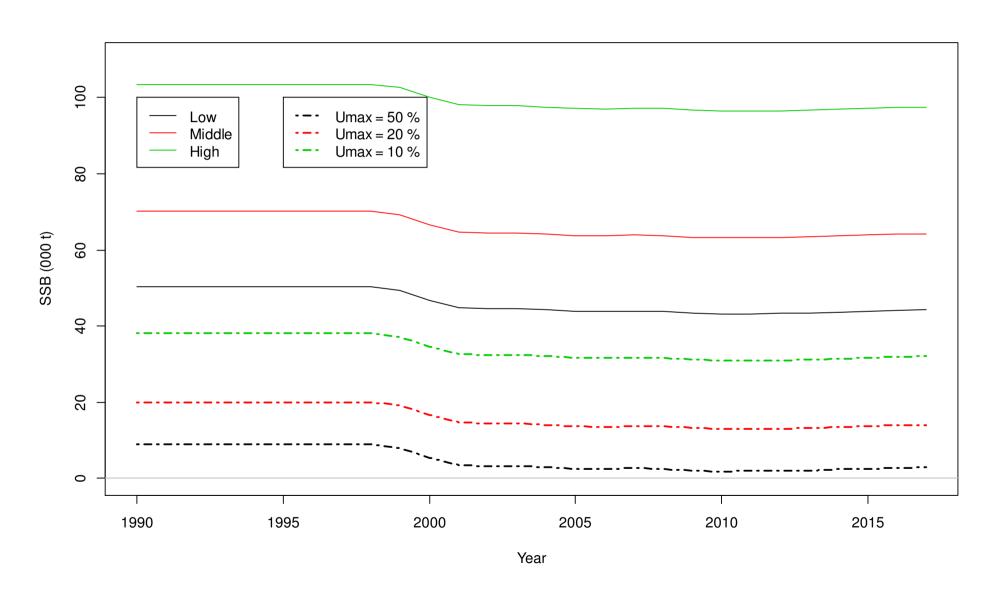
Catch-history based: South Ridge


Applying the catch-history based method

- The key question is what is plausible in terms of a maximum exploitation rate for the whole "stock":
 - In the year of highest exploitation:
 - How many vessels were fishing the stock?
 - How many tows were done?
 - What proportion of the spawning features did they fish?
- U_{max} = 50% is only possible if most of the fish are accessible and there is a large effort over a large proportion of the features (in some year)
- We need to consider what U_{max} is appropriate for each stock (20%, 10%, or something else)


Results: MPD estimates

		B ₀ (000 t)	B ₁₇ (000 t)	B _{beg18} (000t)	ss ₁₇ (%B ₀)	U _{HCR} (%)	Catch (t)
N. Walters	Low	9.7	8.5	8.6	88	5.625	480
	Middle	12.6	11.5	11.5	91	5.625	650
	High	18.5	17.3	17.3	94	5.625	980
Seamounts	Low	23.7	16.6	16.8	70	5.625	950
	Middle	30.9	23.9	24.1	77	5.625	1360
	High	45.1	38.1	38.3	84	5.625	2150
M. Ridge	Low	50.2	44.2	44.3	88	5.625	2490
	Middle	70.2	64.2	64.2	91	5.625	3610
	High	103.6	97.6	97.6	94	5.625	5490


MPD and catch-history based estimates: North Walters

MPD and catch-history based estimates: Seamounts

MPD and catch-history based estimates: Middle Ridge

WSR results: MCMC, MPD, catch-history based

	B ₀ (000 t)	B ₁₇ (000 t)	ss ₁₇ (%B ₀)
Base (MCMC)	43	32	76
MPD	45	32	70
MPD (original aco)	47	31	66
Low (MCMC)	29	19	65
MPD	29	17	58
High (MCMC)	71	61	85
MPD	75	60	81
U _{max} = 50%	11	1.2	11
U _{max} = 20%	15	5.3	35
U _{max} = 10%	20	10	51

Interpretation of the MPD estimates

- Three different treatments deal with the potential biases associated with target strength, absorption coefficient, and analysis method
- No real concern about the results changing hugely if the survey estimates are revised/refined
- Only real issue is species mix for some features
- Need to consider which features may have unreliable acoustic estimates because of contamination from other species.

Recommendations: work to be done at the SAWG workshop

- The results in the draft report are preliminary
- Catch histories may need to be updated
- Appropriate U_{max} values need to be agreed on for each stock (a base and perhaps a low and high value)
- The reliability of the acoustic estimates on features that may have mixed species needs to be considered
- In general, the MPD estimates based on acoustic estimates are to be preferred to the catch-history based estimates.