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1. Introduction 

Vulnerable Marine Ecosystems (VMEs) are ecosystems at potential risk from the effects of 
fishing activities or other anthropogenic disturbances, as determined by the vulnerability of 
their components (e.g., species, communities, or habitats) (FAO, 2009). The United Nations 
require states and regional fisheries management organizations/agreements to implement 
measures to prevent significant adverse impacts on VMEs, which can include closing areas to 
fishing (UNGA, 2007). Several species and taxonomic groups have been identified as 
indicators of VMEs in particular ocean regions to assist management authorities in their 
protection. VME taxa possess traits that make them particularly vulnerable to disturbance 
(slow growth, late maturity, longevity, and fragility), and include species that can form 
structurally complex frameworks such as coral reefs, coral gardens, and sponge grounds-
which provide three-dimensional structures that enhance local biodiversity and act as areas 
of functional significance (e.g., spawning, breeding, and nursery grounds for fish stocks and 
particular life-history stages, and habitat for rare, threatened or endangered species of the 
habitat) (FAO, 2009).  
 
In the Southern Indian Ocean, the Southern Indian Ocean Fisheries Agreement (SIOFA) has 
recently taken a series of steps towards the protection of VMEs. SIOFA’s management efforts 
have identified five Benthic Protected Areas (BPAs) where bottom-fishing trawling is not 
permitted and have adopted a list of VME indicator taxa following UNGA resolutions. For 
SIOFA to meet its management obligations (UNGA, 2007), it requires scientific advice 
informed by maps of where VMEs are known to occur, or likely to occur, in the Agreement 
Area. The aim of this consultancy is to map the biogeographical regions of indicator taxa of 
VME, and VME habitat, in the Southern Indian Ocean to improve knowledge of VMEs within 
SIOFA’s management area and help inform additional management measures to mitigate 
risks to VMEs. We aim to achieve this through the Terms of Reference (ToR) and applied 
deliverables established for the consultancy (Table 1). 
 
The SIOFA area encompasses a large area with a rich biodiversity, especially in terms of VME 
indicator taxa, with an observed species richness of 1921 species and an estimated total 
richness of 2906 species (updated from Ramiro-Sánchez et al., 2021). Occurrence records of 
VME indicator taxa are typically scarce and collected without standardised methodologies. In 
ToR1 and ToR2, we assess their accuracy, quality, and comprehensiveness to properly 
evaluate the uncertainties of any map that will be derived from them. In ToR2, we further 
engage in habitat suitability modelling for predicting distribution patterns of VME indicator 
taxa, as such models are considered useful for marine ecosystem management (Ross and 
Howell, 2013; Reiss et al., 2014). In ToR3, we develop several bioregionalization approaches 
that provide maps of the extent of VME-based bioregions. 
 
Because interpreting at once the distribution of hundreds of species is complex and makes it 
difficult to derive management recommendations, biogeographers often engage in 
biogeographical classifications, also known as bioregionalization (Ebach and Parenti, 2015). 
Bioregionalizations partition the geographical space into biological and physical units based 
on the distribution of multiple species, communities, ecosystems, or other biological 
characteristics– these units are called biogeographical regions or bioregions. Bioregions are 
therefore a simplification (a model) of the true biogeographical distribution of biodiversity, 
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which is generally based on taxa that share similar distributions because of similar ecological 
and physical preferences and of a shared history (Lomolino et al., 2016; Leroy et al., 2019; 
Woolley et al., 2020). These bioregional classifications are an indispensable component of the 
planning and implementation process of protected areas (CBD, 2010). 
 
There are many predictive approaches to map bioregions, which can be generally classified 
into three categories (Woolley et al. 2020). The first one consists in grouping biological 
features into bioregions first, and then spatially predict these bioregions (“group first, then 
predict”). The second one consists in spatially predicting all biological features first, and then 
group them with a clustering approach (“predict first, then group”). The last one consists in 
grouping and predicting bioregions in a single modelling approach (“analyze simultaneously”). 
Each method has its set of advantages and disadvantages that make them complementary in 
the information they provide; although, ultimately, the kind of data available will often limit 
the choice of method (Woolley et al., 2020). 
 
In this progress report, we synthesise results for Terms of Reference 1 to 3 of this consultancy 
(Table 1) and update preliminary observations presented at the PAEWG Annual meeting in 
March 2021. We note that improvements of the models will continue until the end of the 
consultancy (ToR4) and thus, results shown here should be interpreted with caution. 
 
 
 
Table 1. Terms of reference and corresponding deliverables for the consultancy.  

Terms of Reference Deliverables 
ToR1: Compile, clean and verify 
occurrence and environmental data 
 

Consolidated VME occurrence dataset. 
Consolidated environmental variables dataset. 
Maps of VME taxa occurrence. 

ToR2: Evaluate the quality of 
occurrence data and determine spatial 
scale and taxonomic resolution. 
 

Indicators of data quality. 
Maps of optimal resolutions of analysis. 
Maps of predicted VME taxa occurrences. 

ToR3: Develop and compare multiple 
bioregionalization schemes and 
approaches. 
 

Maps of bioregionalization based on occurrence 
data. 
Maps of bioregionalization based on taxa 
distribution models. 
Maps of bioregionalization based on 
generalised dissimilarity models or other 
appropriate modelling techniques. 

ToR4: Reporting 
 

Scientific reports to PAEWG and SC annual 
meetings, 30 days prior to meeting 
commencement date. 
Final report to PAEWG and SC. 
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2. Methods 

2.1 Data 
 
Biological data 
Based on the list of VME indicators adopted by SIOFA1, we downloaded occurrence records 
from the public databases the Ocean Biodiversity Information System2 (OBIS), the Global 
Biodiversity Information Facility3 (GBIF), NOAA’s Deep-sea Corals Data Portal4, and 
Smithsonian Natural History Museum5. We also obtained occurrence records from SIOFA’s 
observer programme and research campaigns led by the Muséum National d’Histoire 
Naturelle. We obtained records for the whole Southern Indian Ocean to account for ecological 
continuity and because of the scant availability of data within SIOFA’s management area. 

We applied verification procedures for taxonomic consistency, error detection, as well as 
evaluation of records in the environmental space. Specifically, we first checked species names 
against the most updated authority, the World Register of Marine Species (WoRMS 2021), for 
synonyms and fossil records. Secondly, we applied automatic error and outlier detection using 
the function clean-coordinates from the R package CoordinateCleaner version 2.0-18 (Zizka 
et al., 2019). We tested for equal coordinates, coordinates over land using the Natural Earth 
data ocean shapefile version 4.1.0 (www.naturalearthdata.com, accessed November 2020), 
and zero coordinates. For duplicates of GBIF and OBIS, we used the catalogue number and 
geographical coordinates to filter out potential duplicates.  

The broad taxonomic resolution of the VME taxa list rendered the download of shallow water 
species, particularly of zooxanthellate corals, whose environmental requirements are 
different from deep-sea taxa. Although the distribution of many deep-sea corals (i.e., 
azooxanthellate) expands to shallower depths, the deep sea is typically defined as waters 
below 200 m. Therefore, in order to retain only deep-water species, we applied several filters 
to the dataset to exclude zooxanthellate corals, which generally do not occur below 50m 
water depth (Cairns, 2007). First, we individually assessed the depth distribution of each 
species and applied the following rule: a species was kept if 90% of its records were below 
200m water depth. With such rule we adopt the general definition of deep sea as waters 
below 200 m, but also incorporate the ecology of species and avoid biased predictions led by 
strict depth cut-offs. To implement the rule and assess the depth range of records, we relied 
on their original recorded depth as indicated in the sample record. In the cases where this 
information was not available, we used the General Bathymetric Chart of the Oceans (GEBCO, 
see next paragraph) to assign depths. Second, we further filtered species known to be tropical 
as we worked through with peer-reviewed deep-sea taxa lists (Cairns, 2021; Kocsis et al., 
2018). The working dataset comprised 1991 species (Table 2). 
 
 

 
1	http://apsoi.org/meetings/sc4	
2	https://obis.org/	
3	https://www.gbif.org/	
4	https://deepseacoraldata.noaa.gov/	
5	https://collections.nmnh.si.edu/ 



 4 

 
 
Table 2. Number of species, genera and family used for analyses. Depending on how many 
occurrences each taxa has (column « Cut-off threshold » in the table), the total number of 
records for each taxonomic level will vary.  Cut-off thresholds were chosen as: “All”: all 
species in the dataset; “5”: a taxon has at least 5 occurrences; “10”: a taxon has at least 10 
occurrences; “30”: a taxon has at least 30 occurrences. These thresholds were used for 
tuning the model parameters of species. 

Cut-off occurrence 
threshold 

Species Genus Family 

All 1991 755 267 
³ 5 734 443 213 
³ 10 466 288 171 
³30 155 109 93 

 
 
 
 
Environmental data 
Environmental data (Table 3) included a global bathymetry model (GEBCO 2021 Grid; GEBCO 
Compilation Group, 2021) downloaded at a resolution of 0.004°. We downloaded additional 
environmental variables from the Bio-Oracle v2.0 and v2.1 datasets (Assis et al., 2018; 
Tyberghein et al., 2021) that represent conditions between 2000 and 2014 to use as 
predictors to model distributions. The variables included sea bottom temperature, dissolved 
O2 concentration, salinity, SiO4

4−, NO3
2− and PO4

3− concentrations at the seafloor. For all 
variables, we downloaded annual mean, minimum and maximum values. We also included 
current velocity at the seafloor and primary productivity at sea surface. Particulate organic 
flux at seafloor was downloaded from the Global Marine Environment Datasets6 (GMED). In 
addition, we included the layers aragonite and calcite saturation horizon downloaded from 
OCEANSODA7 at a resolution of 1°. 
 
In order to calculate spatial autocorrelation and evaluate models with equal area grid cells, 
we used the Albers Equal Area projection centred at latitude 30°S and longitude 80°E to 
reproject the environmental variables. 
 
 
 
 
 
 
 
 
 

 
6 http://gmed.auckland.ac.nz/ 
7 https://esa-oceansoda.org/outputs/ 
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Table 3. Environmental variables used as predictors of taxa distributions. 

Data source Description 
Depth General Bathymetric Chart of the Oceans – 

GEBCO2021 – 0.004 degrees. Raster data. 
Temperature (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 
Salinity (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 
Dissolved Oxygen (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 
Silicone (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 
Phosphate (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 

Nitrate (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 

Primary productivity at surface (min, max, 
mean) 

Bio-Oracle, 0.083 degrees. Raster data. 

Currents velocity (min, max, mean, range) Bio-Oracle, 0.083 degrees. Raster data. 
Omega Aragonite OCEANSODA, 1 degree. Raster data. 
Omega Calcite OCEANSODA, 1 degree. Raster data. 

Particulate Organic Carbon GMED, 0.083 degrees. Raster data. 

 

2.2 Indicators of data quality 

To investigate the accuracy of the consolidated occurrence dataset, completeness, and 
uncertainty levels, we produced several maps of distribution of VME indicator taxa and 
indicators of data quality (Soberón et al., 2007; Leroy et al., 2017).  

Specifically, we first mapped the point-locality distributions of VME indicator taxa and the 
gridded observed richness. Second, in each grid cell, we estimated the theoretical total 
species richness with three non-parametric incidence-based richness estimators: ICE (Gotelli 
& Colwell, 2011), Chao2 and Jackknife (Chiu et al., 2014). These methods project the 
estimated total number of species based on the observed number of species in the sample 
plus a correction based on the number of rare species (typically, singletons or doubletons), to 
account for the unobserved fraction of rare species. We chose non-parametric richness 
estimators because they have been proven to perform better than other richness estimators 
(Walther & Moore, 2005). Third, we produced maps of estimated sampling completeness by 
dividing the observed species richness in each cell by the estimated total richness. Because 
species richness estimators can be biased when the sampling intensity and observed richness 
are low, resulting in overestimations of data completeness (Leroy, 2012), we defined a 
richness threshold of 30 below which the completeness was set to zero. We produced these 
different maps at the 1° x 1° spatial resolution. We chose this resolution as a trade-off 
between data quantity and usefulness of the bioregion predictions. Exploration of the 
environmental gradients of records at different resolutions assisted in the selection. 
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2.3 Bioregionalization schemes 
2.3.1 Bioregions based on observed occurrences 
 
This first method consists in grouping observed distributions of VME indicator taxa into 
bioregions. 
 
We divided the Southern Indian Ocean into a 1° latitude-longitude grid. We created a 
species/grid cell contingency table of presence-absence and transformed it into a bipartite 
occurrence network (Vilhena and Antonelli, 2015). In essence, a network is a representation 
of how species are distributed and connected between sites (here, grid cells). A network 
comprises nodes that can be connected to each other by links (or edges). Here, nodes 
represent grid cells and, separately, the species that occur in them, while edges link grid cell 
and species nodes indicating whether a species is present in a grid cell. The network is 
bipartite because each type of node, grid cell and species, cannot connect to another node of 
the same type; that is, species nodes can only connect to grid cell nodes and grid cell nodes 
can only connect to species nodes. 

We created networks using the R package “biogeonetworks” (Leroy, 2021). We visualised 
networks with the software Gephi 0.9.2 (Bastian et al., 2009) and used the ForceAtlas2 
algorithm (Jacomy et al., 2014) to spatialise them. The ForceAtlas2 algorithm groups nodes 
that are interconnected (i.e., grid cells and species belonging to the same biogeographical 
region) and separates groups of nodes that are not interconnected (different biogeographical 
regions). The graphical representation of the network facilitates the analysis of the data. For 
example, we can detect the erroneous inclusion of shallow water species. 

In order to detect biogeographical regions, we applied a community-detection algorithm to 
the network. Community-detection algorithms aim at grouping together nodes that belonged 
to the same biogeographical region. As a community detection algorithm, we chose “Map 
Equation” (Rosvall and Bergstrom, 2008), as it has been recommended in previous 
biogeographical works (Bloomfield et al., 2017; Edler et al., 2017; Rojas et al., 2017; Vilhena 
and Antonelli, 2015) and it features hierarchical clustering. We ran Map Equation with 1000 
trials to find the optimal clustering and we ran it with hierarchical clustering to test whether 
larger regions showed a nested hierarchy of subregions. 

 
2.3.2 Predicted bioregions 
2.3.2.1 Group first, then predict 
We aimed to model the distribution of biogeographical regions identified in step 2.3.1. We 
proceeded as follows: (1) we collated environmental predictors for VME indicator taxa; (2) we 
modelled the relationship between bioregions and predictors using an ensemble modelling 
approach based on multiple algorithms, in order to obtain predictive suitability maps for each 
biogeographical region, (3) we stacked these predictive suitability maps in order to obtain in 
each pixel the predicted suitability of biogeographical regions of VME indicator taxa. 

 
Our models comprised all species under the taxonomic categories listed in SIOFA’s VME taxa 
list for the Southern Indian Ocean (Longitude 20°E-147°E, Latitude 13°N-65°S) at a 1° x 1° 
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spatial resolution. We chose this resolution after preliminary observations of the occurrence 
records: there were few records to work at finer resolutions (i.e., < 1° latitude-longitude), 
risking high variability due to sampling bias; on the other hand, coarser resolutions (i.e., 2° 
latitude-longitude) were not representative of the environmental conditions driving 
distributions. Thus, 1° x 1° spatial resolution appeared sufficient to identify broad geographic 
patterns. We selected temperature, salinity, dissolved oxygen, nitrate, silicate and phosphate 
concentrations, speed of currents, particulate organic carbon (POC) flux, aragonite and calcite 
saturation state horizon at the bottom, primary productivity at sea surface, and bathymetry. 
These environmental variables have been regarded as important in determining large-scale 
distribution patterns of deep-sea habitat forming species (Davies and Guinotte, 2011; Morato 
et al., 2020; Yesson et al., 2012; Yesson et al., 2016). We also included tectonic plates to 
account for dispersal restrictions. 

 
We fitted predictive models for the three biogeographical regions identified at level 1 of the 
hierarchy, for which we had at least 30 available occurrences (Table 4). Biogeographical region 
occurrences and environmental variables were projected to Albers Equal Area, centered at 
80°E longitude and 52°S latitude. We fitted SDMs in biomod2 v.3.4.13 (Thuiller et al., 2020) 
using seven algorithms: general linear model, general additive model, artificial neural 
network, multivariate adaptive regression splines, generalised boosted models, factorial 
discriminant analysis, and random forest. Only the random forest was tuned with 1000 
pruned trees and equal sample size of presence and absence classes. We used absence data 
where, for each biogeographical region, an absence corresponds to the presence of another 
biogeographical region. 
  
We evaluated model performance with Jaccard indices, true skill statistic (TSS) and area under 
the curve (AUC) (Leroy et al., 2018). We ran a 4-fold block cross-validation procedure using a 
block size of 441 000m² (corresponding to the minimum autocorrelation range in our 
variables) (Roberts et al., 2017; Valavi et al., 2019) to improve model evaluation, where data 
were randomly split in calibration (75%) and evaluation subsets (25%). We discarded models 
with a poor performance (Jaccard index < 0.3 with cross-validation) and produced an 
ensemble model based on the median of predictions. In the final post-processing step, we 
stacked all three-ensemble models and derived one map where each pixel showed the highest 
probability of all ensembles. 
 
 
Table 4. Number of occurrences and selected variables used to predict the biogeographical 
regions of level 1 of the hierarchy. 

Cluster Number of occurrences Selected variables 
1 392 Mean Dissolved oxygen 

Maximum depth 
2 71 Mean Dissolved oxygen 
3 59 Maximum depth Mean 

Dissolved oxygen 
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Table 5. Number of occurrences and selected variables used to predict the biogeographical 
regions of level 2 of the hierarchy. 

Cluster Number of 
occurrences 

Selected variables 

1.1 87 Mean Dissolved oxygen 
Maximum depth 

1.2 21 Mean Dissolved oxygen 
Maximum depth 
Minimum salinity  

1.3 25 Minimum Primary Productivity 
Mean Dissolved oxygen 
Mean Temperature 

1.5 25 Salinity range 
1.7 11 Mean Dissolved oxygen 

Minimum salinity 
2.1 23 Mean Dissolved oxygen 
2.4 11 Mean Dissolved oxygen 
3.1 16 Maximum depth 

Mean Dissolved oxygen 

 
 
For the eight sub biogeographical regions obtained at level 2 of the hierarchy, we also fitted 
predictive models following the same procedure described above. However, because these 
biogeographical regions had less than 30 occurrences (Table 5), it was not possible to apply 
block cross-validation for the model evaluation. Instead, all occurrences were used in the 
models and no evaluation of model performance was carried out.  
 
For the modelling of biogeographical regions of both hierarchical levels, the selection of 
variables followed a semi-automatic process using permutation-based variable importance 
that we describe as follows (Bellard et al., 2016; Leroy et al., 2014). First, we assessed the 
correlation between variables and groups of intercorrelated variables were retained. We 
calibrated models for each group of intercorrelated variables and the most important variable 
from each group was retained. If several variables had the same importance, we kept 
arbitrarily the first variable. Then, we calibrated one model with the non-correlated variables 
and the most important variables selected from the group of intercorrelated variables. From 
this model, we again calculated the importance of the variables and we only kept variables 
that reached 10% of importance for at least 50 % of the models (median value). Finally, we 
calculated the correlation between these variables to identify if there was a negative 
correlation; these variables were individually assessed and discarded. The final set of variables 
selected to predict each biogeographical region is presented in Table 4 and Table 5, 
correspondingly. 
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2.3.2.2 Predict first, then group 
We aimed to model the current distribution of biogeographical regions of VME indicator taxa 
in the Southern Indian Ocean in a « predict first, then group » approach. We proceeded as 
follows: (1) we collated environmental predictors for VME indicator taxa; (2) we modelled the 
relationship between taxa and predictors with random forest models, in order to obtain 
predictive suitability maps for each taxon; (3) we converted suitability into binary 
suitable/unsuitable maps using a threshold optimised on the Jaccard index; (4) we detected 
bioregions on these predictive maps using the same clustering approach as in 2.3.1. Our 
models comprised all taxa under the taxonomic categories listed in SIOFA’s VME taxa list in 
the Southern Indian Ocean (Longitude 20°E-147°E, Latitude 13°N-65°S). We predicted maps 
at the species, genus, and family levels. 
  
We worked at a 0.083° x 0.083° resolution. This resolution is the native resolution of the 
environmental variables we selected, which are the same as for Region Distribution Modelling 
(Methods 2.2.1).  
 
All taxa (species, genus, family) with more than five records (total: 1,390) were modelled with 
down-sampled presence-only random forests, using a set of 50,000 randomly sampled 
background points. We chose down-sampled random forests because these techniques are 
one of the best performing techniques for presence-only distribution models, especially in 
situation with low occurrence numbers (i.e., between 5 and 30 – see Valavi et al. 2021a, b). 
In addition, random forests are relatively fast single models. Because most VME indicator taxa 
have only a limited number of occurrences (Table 2), we adapted our modelling process 
depending on the number of occurrences, with a decreasingly complex procedure. 
  
For taxa with more than 30 records, we applied a variable selection procedure based on 
variable importance permutations, in order to select the most relevant variables. For each 
taxon, we filtered important variables with the following criteria: (1) median importance 
across all permutations above 0.05; (2) in case of pairwise negative correlations below -0.4 in 
importance among variables, the least important variable was excluded; (3) in order to limit 
overfitting, we kept a maximum of one variable per 10 occurrence points, excluding the least 
important variables every time (e.g., for a species with 50 occurrence points, a maximum of 
5 variables could be kept). Once the important variables were selected for each taxon, we 
calibrated and evaluated models with a 3-fold block cross-validation procedure using a block 
size of 697 246m² (corresponding to the minimum autocorrelation range in our variables) 
(Roberts et al., 2017; Valavi et al., 2019). Both presence and background points were used for 
the block cross-validation. To account for variations among random forest runs, we repeated 
each model three times, in each cross-validation fold, resulting in a total of nine models per 
taxon. We evaluated each model with two metrics: the Boyce index (R package enmSdm, 
Smith, 2020), and the gain in Area under Precision Recall (R package prg, Kull and Flach, 2022), 
two metrics recommended for presence-only distribution models (Leroy et al., 2018, Valavi 
et al., 2021b). To produce the final suitability map, we averaged all projections from the nine 
models, excluding models with a poor predictive ability, i.e., models with a Boyce index below 
0.3. 
  
For taxa with records ranging from 5 to 30, we chose to not apply a statistical variable 
selection procedure, since such a procedure presents the risk of representing sampling biases 
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rather than true effect of predictors. Instead, for each taxon, we chose the most frequently 
selected predictors in the same taxonomic order (on the basis of the selection procedure for 
taxa with more than 30 records). For those taxa which were in an order where there was no 
other taxon upon which the variable selection procedure had been run, we selected the most 
frequently selected predictors across the entire pool of taxa. We modelled these species with 
no cross-validation procedure because of the low number of records. Instead, we evaluated 
models on the calibration dataset, only to remove the most spurious models, using the same 
metrics and cut-off as above. Such a procedure implies that we cannot have a proper 
evaluation of the predictive performance models – hence, these models are to be interpreted 
with caution. We repeated each random forest three times. To produce the final suitability 
map, we averaged all projections from the three models, excluding models with a Boyce index 
below 0.3.  
  
Once we had predicted the distributions of suitability for all taxa, we applied the 
bioregionalization procedure at the family, genus, and species levels. To be able to apply the 
bioregionalization procedure, we had to convert the predicted suitability maps into binary 
suitable/unsuitable maps. To do that, for each taxon, we look for the optimal suitability cut-
off by maximising the Jaccard metric on the full set of presences and an equal number set of 
randomly selected background points, with 10 repetitions in total. We did that to limit the 
effect of sample prevalence bias because of the large number of background points (Leroy et 
al., 2018). Note that because we do not have information on the true absence of species, we 
cannot confirm with confidence that areas deemed as “unsuitable” are truly unsuitable. 
Rather, unsuitability is here defined as “either unsuitable or never sampled in similar 
environmental conditions”. Conversely, we have confidence on areas deemed as “suitable” 
by our models, because we have samples for these taxa in similar environmental conditions. 
 
On the basis of these binary suitability maps, we built two biogeographical networks. A first 
one, based on all taxa, including those for which models could not be reliably estimated, and 
a second one, based only on the taxa for which models could be reliably evaluated (i.e., taxa 
with more than 30 occurrences). We applied upon these networks the Map Equation 
community-detection algorithm in order to detect predictive bioregions.  
 
 

3. Results 

3.1 Indicators of data quantity and quality 

Most of the available records were obtained from the publicly available repositories GBIF and 
OBIS, where we could find information for most taxonomic resolutions. Records collated from 
NOAA and Smithsonian also stored information up to species level, whereas records coming 
from the SIOFA Secretariat presented a coarser taxonomic rank (Order) of limited use for 
biodiversity assessments, although useful for model validation. 

Records were mainly distributed in waters within national jurisdictions where survey effort is 
typically concentrated, whereas large areas of scant information dominated the centre of the 
SIOFA range (Figure 1Error! Reference source not found.). The majority of the records 
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occurred above 1,000 m water depth, although the distribution spanned all depths with some 
typically deep-sea taxa found in deeper areas (Figure 2).  

The completeness index, the ratio between observed richness and estimated richness, 
indicated that 72% of the species richness of the area is known (Table 6).  This index varied 
for each of the phyla, with sponges (Porifera) amongst the worst sampled and corals 
(Cnidaria) amongst the best sampled. However, looking in detail at the spatial distribution of 
the completeness index it suggests that the SIOFA area is critically under-sampled (Figure 3). 
Only few sites have a high completeness, which coincide with areas of high species richness 
and sampling intensity (Figure 3). 

 
 
 
 
 

 
Figure 1. Distribution of taxa records over the considered area of study. Shades of blue 
indicate the number of occurrences, where darker shades reflect higher concentration of 
records. 
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Figure 2. Depth distribution of records by VME taxa. 

 
 
 
 
Table 6. Completeness and species richness of each phylum of the database. Completeness is 
the ratio between observed and estimated species richness (Soberón et al., 2007). The 
completeness is based on three estimators (Chao2, ICE and Jack1) averaged across all sites. 

 
Species 

richness 
Average estimated 

richness 
Completeness 

index 
Database 1306 1812 0.72 
Cnidaria 599 753 0.80 
Echinodermata 86 118 0.73 
Chordata 110 138 0.80 
Porifera 264 727 0.36 
Bryozoa 177 219 0.81 
Foraminifera 13 19 0.68 
Brachiopoda 33 41 0.80 
Annelida 22 29 0.76 
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Figure 3. Indicators of data quantity and quality. From top to right: observed richness; 
completeness index; sampling intensity, and number of occurrences. 
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3.2 Bioregionalization schemes 
 
3.1.1 Observed bioregions 
We detected three biogeographical regions in the Southern Indian Ocean at the first 
hierarchical level (Figure 4A). Their distribution reflects the availability of the input data, 
which were distributed within jurisdictional waters mainly, although many records were not 
included in the analysis given that these were not at species level, rather at coarser taxonomic 
levels (e.g., order)8. Biogeographical region 1 is the largest encompassing a broad latitudinal 
and longitudinal span. This biogeographical region seems to represent the continental shelf 
and slope. Biogeographical region 2 represents the Southern Ocean. Biogeographical region 
3 is the predominant group observed in SIOFA’s management area. This group is sparsely 
distributed around Walter’s Shoal, the Southwest Indian Ridge, east of the Chagos Lacadive 
Plateau, and north of Ninety-east Ridge. 
 
At the second level of hierarchy, we observed a finer distribution within the larger 
biogeographical regions with distinct geographic differences (Figure 4B). Biogeographical 
region 1.1 was the most extended, mainly present at latitudes above 20°S. Biogeographical 
region 1.2 was characteristic of the continental slope of northwest Australia. Biogeographical 
region 1.3 was well defined around the east of South Africa. Biogeographical region 1.5 had a 
distinct distribution along the southeast of Australia, covering the continental shelf between 
latitudes 30°S – 50°S. At those latitudes on the continental slope, biogeographical region 1.7 
was present. The Southern Ocean biogeographical region was divided into two subregions, 
where subregion 2.1 had a localised distribution north of the Kerguelen Plateau and subregion 
2.4 had a disperse distribution north and south of the Sub Antarctic Front at 50°S latitude. 
Finally, region 3.1 was distributed across some abyssal areas. 
 

 
8 For example, all records sent by the SIOFA were excluded from all our bioregionalization analyses, 
because they were at a taxonomic resolution too coarse to be useful. 
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Figure 4. Biogeographical regions (clusters) of VME indicator taxa in the Southern Indian 
Ocean: (A) Three biogeographical regions of similar species composition detected at the first 
hierarchical level. (B) Finer sub-biogeographical regions detected at the second hierarchical 
level; black indicates no assigned subregion.  
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The distribution of species between grid cells is illustrated in the biogeographical network for 
hierarchical level 1 (Figure 5) and level 2 (Figure 6). At level 1 of the hierarchy, the 
biogeographical regions detected have very distinct faunas, which is observed in the network 
as the groups of nodes are well separated. In addition, the number of links between 
biogeographical regions is limited, that is, not many species are shared between regions. 
Specifically, we can note that the bioregion specific to the SIOFA area is very distinct from the 
other regions, with a limited number of links. This observation suggests that the SIOFA area 
has a unique composition of VME indicator taxa, not found outside this region. These 
observations are well reflected in the endemism patterns observed for each bioregion (Table 
7). 
 
At level 2 of the hierarchy, the biogeographical regions detected have also distinct faunas, 
although it is not as strong as at level 1. Because this level reflects finer patterns of level 1, 
the number of links is similar but the distribution of these within and among regions become 
well-defined. The sub biogeographical region predominant within SIOFA (biogeographical 
region 3.1) remains still quite unique in terms of number of links and nodes. The endemism 
patterns observed for each bioregion are presented in Table 8. 
 
 

 
 
Figure 5. Biogeographical network of VME indicator taxa in the Southern Indian Ocean at the 
first level of hierarchy. Each biogeographical region is represented in different colours. The 
predominant biogeographical region found within SIOFA’s management area is coloured in 
blue.  
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Figure 6. Biogeographical network of VME indicator taxa in the Southern Indian Ocean at the 
second level of hierarchy. Each sub biogeographical region is represented in different 
colours. The predominant biogeographical region found within SIOFA’s management area is 
coloured in green. Grey indicates no assigned biogeographical region. 

 
 
 
Table 7. Number of species and endemicity of each biogeographical region at level 1. 

Level 1 
Biogeographical 
region  

Total 
richness 

Assigned 
richness 

Endemic 
richness 

% Endemic 
species 

% Indian 
Ocean species 

1 1667 1620 1586 95.14 80.11 
2 234 204 180 76.92 11.24 
3 121 108 79 65.29 5.81 
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Table 8. Number of species and endemicity of each biogeographical region at level 2. 

Level 2 
Biogeographical 
region  

Total 
richness 

Assigned 
richness 

Endemic 
richness 

% Endemic 
species 

% Indian 
Ocean species 

1.1 754 414 219 29.05 18.81 
1.3 223 133 88 39.46 5.56 
1.2 189 86 26 13.76 4.71 
2.1 96 60 41 42.71 2.39 
1.5 96 41 12 12.50 2.39 
1.7 65 20 6 9.23 1.62 
3.1 22 12 4 18.18 0.55 
2.4 8 3 1 12.50 0.20 

 
 
 
 
3.1.2 Bioregions based on the “Group first, then predict” approach 
We were able to successfully model the distribution of the three identified bioregions with 
our ensemble modelling approach. The map in Figure 7 shows the predicted distribution of 
bioregions. We added on this map the degree of uncertainty (index of confidence from 0 to 
1000) that we have in our predictions, such that we are less confident of predictions in darker 
areas. These areas are uncertain because none of the samples we gathered were located in 
similar conditions – hence, model predictions in these areas are extrapolations. 
 
The final predictive map of bioregions showed three bioregions encompassing the SIOFA area. 
The biogeographical regions 1 and 2 prevail from 20°N to 10°S latitude. Below 40°S latitude, 
the Southern Ocean biogeographical dominates the area. Areas of uncertainty in the models’ 
predictions coincide with areas of heterogeneity in biogeographical composition and with 
areas where there was no initial data. Notably, the area west of St Paul and Amsterdam 
islands and the middle of SIOFA’s management area are poorly predicted. 
 
Although no formal evaluation of the model performance was carried out for predictions at 
the second level of the hierarchy, we modelled the distribution of the eight subregions (Figure 
8). As previously, we incorporate confidence levels in the predictions for consistency. Note 
that, because of the low number of points, we cannot reliably evaluate these predictions. 
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Figure 7. Predicted biogeographical regions of VME indicator taxa in the Southern Indian 
Ocean at the first level of the hierarchy. Areas with low confidence in the prediction are 
shown in darker shades of grey.  
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Figure 8. Predicted biogeographical regions of VME indicator taxa in the Southern Indian 
Ocean at the second level of the hierarchy. Areas with low confidence in the prediction are 
shown in darker shades of grey. Note that, because of the low number of points, we cannot 
reliably evaluate these predictions. 

 
 
 
 
3.1.3 Bioregions based on the “Predict first, then group” approach 
We produced bioregionalizations based on family, genus, and species level for all taxa and for 
taxa with more than 30 occurrences (Figure 9-14). Bioregionalizations based on this approach 
have a much finer resolution compared to the previous method, because they are based on 
the fine-scale predictive distribution maps for each taxon. This increase in resolution is an 
improvement. However, it is important to note beforehand that these predictive models are 
based on a limited set of variables, and do not account for species dispersal abilities. Hence, 
these maps are likely to connect together areas with similar environmental conditions, 
despite the fact that they may not share the same taxa in reality. Consequently, the maps 
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presented here are complementary to the maps provided by the previous predictive 
approach. 
 
Family-based bioregionalization for all taxa produced 10 clusters (Figure 9). Cluster 1 was the 
largest, covering the entire latitudinal range of the area of study. It followed the continental 
shelf, slope, and shallower depths of topographically complex areas (i.e., ridges). Cluster 2 
covered some of the abyssal plains up to 50°S latitude. Cluster 3 was present in the depth 
zone just below cluster 1 across the entire Indian Ocean. Cluster 5 represented another 
abyssal region. Cluster 7 was predominant south of 50°S latitude. Cluster 8 was abyssal, 
refining areas in cluster 2, while cluster 9, also abyssal shared the plains with cluster 5.  
 
Family-based bioregionalization for taxa with more than 30 occurrences produced 7 clusters 
(Figure 10). As opposed to the bioregionalization with all taxa, details in the depth zones were 
lost and predictions became more homogeneous. For example, clusters 2 and 3 in Figure 9 
became part of cluster 1 in Figure 12. Cluster 7 in Figure 9 also disappears in Figure 10. The 
abyssal areas were less predicted when using a threshold of occurrences.  
 
Genus-based bioregionalization for all taxa produced 12 clusters (Figure 11). At this level, 
there was a larger spatial coverage than at family-based clusters. Ocean basins (clusters 1 and 
5) were well defined as well as clusters representing the bathyal zone (clusters 2, 3). At this 
level, we found more detail in latitudes below 50°S with four clusters (cluster 7, 8, 9, 12).  
 
Genus-based bioregionalization for taxa with more than 30 occurrences produced 8 clusters 
(Figure 12). Very deep areas were not predicted and, in general, predictions were narrower 
in their depth zones. 
 
Both species-based bioregionalizations produced 8 clusters (Figure 13 and 14). The spatial 
predictions are very similar to those at the genus-level, although more conservative when 
including only species with more than 30 occurrences. With such threshold, shallower and 
upper bathyal depths are predicted, reflecting the more intense sampling typical of these 
depth zones. 
 
Overall, three main observations can be derived from these maps. First, the spatial coverage 
of the prediction increases when all taxa are included regardless of the number of 
occurrences, because it reflects a wider diversity of the input data. However, it is not possible 
to reliably evaluate models for taxa with less than 30 occurrences. Conversely, 
bioregionalizations with an occurrence threshold are more conservative, partially 
representing the diversity of the area. We can notice that the deepest areas of the Indian 
Ocean are less covered when taxa with less than 30 occurrences are excluded. By investigating 
bioregion composition and indicator taxa it is possible to understand if these resulting 
bioregions can be used as proxies for habitats. Second, with increasing resolution in 
taxonomic level, predictions are reduced spatially, as expected, as there is less information at 
each level. Third, these maps suggest that the SIOFA has a greater diversity of bioregions than 
observed in Figure 7-8, which is insightful for the ultimate objective of the identification of 
key areas for conservation. 
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Figure 9. Family-level bioregionalization of VME indicator taxa in the Southern Indian Ocean 
based on all species. There are 10 bioregions depicted in different colours. White areas 
indicate no prediction. 
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Figure 10. Family-level bioregionalization of VME indicator taxa in the Southern Indian 
Ocean based on taxa with more than 30 occurrences. There are 7 bioregions depicted in 
different colours. White areas indicate no prediction. 
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Figure 11. Genus-level bioregionalization of VME indicator taxa in the Southern Indian Ocean 
based on all species. There are 12 bioregions depicted in different colours. White areas 
indicate no prediction. 
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Figure 12. Genus-level bioregionalization of VME indicator taxa in the Southern Indian Ocean 
based on taxa with more than 30 occurrences. There are 7 bioregions depicted in different 
colours. White areas indicate no prediction. 
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Figure 13. Species-level bioregionalization of VME indicator taxa in the Southern Indian 
Ocean based on all species. There are 8 bioregions depicted in different colours. White areas 
indicate no prediction. 
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Figure 14. Species-level bioregionalization of VME indicator taxa in the Southern Indian 
Ocean based on species with more than 30 occurrences. There are 8 bioregions depicted in 
different colours. White areas indicate no prediction. 
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4. Discussion 

Biodiversity knowledge of VME indicator taxa in the Southern Indian Ocean is both limited 
and spatially aggregated. The taxonomic resolution of biological data is at generic levels for 
areas of interest, specifically in SIOFA’s management area, which reduces the dataset for 
comprehensive biogeographical analyses. Indeed, the majority of resolved data at species 
level is available from territorial waters. Despite this data-poor situation, we were able to 
detect three main and eight nested biogeographical regions based on observed occurrence 
records. These results have two main implications. First, SIOFA’s management area hosts a 
unique biogeographical region, which suggests a decisive responsibility for SIOFA to preserve 
deep-sea biodiversity. Second, data shortfalls make it impossible to identify nested 
biogeographical regions based on observed samples and map them at a resolution relevant 
for conservation decisions. Thus, conservation decisions will rely on the predictive modelling 
approaches presented here to deal with the data-poor situation of the Southern Indian 
Ocean. Together, the resulting predictive maps and associated uncertainty of the models’ 
predictions are complementary in the information they convey. Therefore, despite the poor 
quantity and quality of underlying data, these different approaches will be instrumental to 
inform and guide the future conservation planning procedure of this consultancy.  

Due to data constraints, we acknowledge that the resolution of the analyses of our first 
predictive bioregionalization approach is too coarse (1° latitude-longitude). However, the 
resultant bioregions are supported by and refine existing global biogeographic classifications. 
The marine realms (based on endemicity; Costello et al., 2017) resemble the distribution of 
our observed biogeographical regions, although the representation of the central Indian 
realm is significantly overrepresented according to our predictions. On the other hand, the 
Global Open Oceans and Deep Seabed (GOODS; Watling et al., 2013) classification depicts the 
Indian Ocean as one homogeneous lower bathyal (800 – 3,500 m) province and one 
homogenous abyssal (> 3,500 m) province. This classification, which is based on 
oceanographic proxies and refined by expert knowledge, does not take into account potential 
dispersal restrictions due to geographical distance and, according to authors; it should 
especially be refined in the bathyal depth zone. Although, our first level bioregionalization 
supports the GOODS classification, the nested biogeographical regions at the second level 
suggest greater spatial divergences. Thus, our first modelling approach is an improvement 
over these classifications. Nevertheless, because of its resolution, these first maps may be of 
limited use for applied management decisions at a scale relevant for fisheries, that is, at 
seamount scale.  

The taxa distribution models improved the first modelling approach two-fold. First, we were 
able to model the individual environmental requirements of each taxon. Second, because 
models are individually undertaken for each taxon, the original resolution of the 
environmental variables remains unchanged. Consequently, the spatial resolution of the 
output maps is at a finer level increasing their value for management applications. Here, 
previous works also support our results. The bioregions obtained at the family level resemble 
the preliminary predicted distributions of statistical bioregions for the SIOFA area based on 
OBIS data and The ABNJ Deep Seas Project9, which was based on records at suborder 
taxonomic level. In addition, our bioregions obtained at species taxonomic level refine both 
schemes and enlarge our biogeographical knowledge of deep-sea biodiversity in the Indian 
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Ocean. However, it is worth noting that these maps reflect bioregions based on the modelled 
distributions of taxa and, consequently, do not take into account aspects such as dispersal 
limitation (e.g., note the ocean-wide distribution of Cluster 2 on the species-based map). 
Thus, some species and bioregions are over predicted in areas where geographic distance or 
local conditions impose a barrier to dispersal. Hence, observed bioregions and expert-opinion 
are important to inform modelled maps.  

Altogether, these two first approaches are complementary in their relative strengths and 
weaknesses: the first map is based on observed distributions, and thus accounts for species 
dispersal limitations, but is at a coarse resolution, whereas the second map is based on 
predicted distributions, and thus allows a very fine resolution, but does not account for 
dispersal limitations. Consequently, in the future developments we will tentatively investigate 
novel methods to couple both maps, in order to produce a final map at a fine resolution all-
the-while accounting for major limits to species dispersal in the SIOFA area.  

As a third modelling approach, we aim to develop Regions of Common Profile (RCPs, Foster 
et al., 2013) statistical bioregions, the state-of-the-art modelling technique for 
bioregionalization (Hill et al., 2020). We hope to refine the bioregionalization predictions of 
the region distribution models and the taxa distribution models with the outputs of this 
“analyse simultaneously” modelling approach that considers simultaneously biological and 
environmental interactions for species distributions. Currently, we are undertaking analyses 
in collaboration with Dr Piers Dunstan and Dr Skipton Woolley, who are part of team who 
developed these models. These models are computationally expensive and require days to 
run. We will present the outputs of these models in March 2022. 

To date, work is in progress to refine the modelling approaches presented here. The model 
outputs are preliminary and should not be taken as the final product until the end of the 
consultancy. This report provides the opportunity to follow the work in progress and keep up 
to date with the methodology used in the analyses.  
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