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SIOFA Conservation and Management Measures (CMM) 2019/01 directs the Scientific Committee 
(SC) to provide maps of where vulnerable marine ecosystems (VMEs) are known to occur, or 
likely to occur, in the Agreement Area. The Meeting of the Parties shall act on the advice of the 
SC in regards with the VME habitat mapping and update its interim bottom fisheries measures. 
Here we present the first steps towards completing the task of predicting the distribution of VME 
indicator taxa in the SIOFA.  

Recommendations (proposals and working papers only) 
This document is to be discussed within the PAEWG-03 meeting. 
 



Introduction 
Typically, deep-sea species are slow-growth, long-lived, and late maturing; traits that limit 
their potential for resilience and recovery from human disturbances such as bottom-contact 
fishing, climate change and, potentially in the future, deep-sea mining (Ramirez-Llodra et al., 
2011).  Some of the species and habitats found in the deep seafloor are recognised as 
vulnerable marine ecosystems (VMEs) in need of protective management and conservation 
measures (UNGA, 2006). Several taxa have been acknowledged to be VME indicators because 
they are the most likely to be found in habitats meeting the criteria for VMEs (NAFO, 2019; 
NEAFC, 2014), amongst them cold-water corals (CWCs) encompassing reef framework 
forming and solitary scleractinians, octocoral aggregations (corals gardens) and deep-sea 
sponge aggregations (NAFO, 2019; NEAFC, 2014). 

The VME concept started to gain recognition after the United Nations General Assembly 
(UNGA) 61/105 resolution was passed (UNGA, 2006), and called upon Member States to 
minimise damage to these habitats. Resolutions passed by the UNGA are not binding, but the 
Regional Fisheries Management Organisations (RFMOs), which nations are contracting, have 
the right to adopt legally binding measures.  

The FAO guidelines for fishing activities in the High Seas fisheries indicate actions to prevent 
adverse impacts on VMEs. According to the guidelines, management actions are to be 
designated to ensure that High Seas ecosystems structure and functioning is not impaired. An 
inherent condition for the application of these measures is the spatial delineation of where 
these habitats reside (Rice et al., 2011). Accordingly, the objective of this project is to map 
bioregions based on VME indicator species distribution data. In order to characterise 
bioregions, we will first model the distributions of VME indicator taxa. In this working paper, 
we therefore present the progress up to date in collating data, curating it, and modelling 
distribution of indicator taxa for which a working example of outputs is shown.  

 

Methods 
Biological and environmental data 
The occurrence database of VME indicator taxa compiled records from different repositories: 
the Global Biodiversity Information Facility (GBIF, gbif.org,  extracted on 9/11/2020), the 
Ocean Biogeographic Information System (OBIS, obis.org, extracted on 9/11/2020), NOAA 
Deep-Sea Coral Data Portal (extracted on 16/11/2020), Smithsonian National Museum of 
Natural History (extracted on 16/11/2020), and SIOFA Secretariat. The initial search of records 
was limited to a wider polygon encompassing the SIOFA area and further restricted to records 
in the Indian Ocean (www.marineregions.org). 

Environmental variables hypothesised to drive biogeography of deep-sea habitat forming 
species were downloaded from several publicly available global scale sources (Table 2): Bio-
Oracle (https://www.bio-oracle.org/), National Oceanic and Atmospheric Administration 
(NOAA; https://www.ncei.noaa.gov/access/oads/), Global Marine Environmental Datasets 
(GMED; http://gmed.auckland.ac.nz/) and General Bathymetric Charts of the Oceans (GEBCO; 
https://www.gebco.net/). Seafloor variables included bathymetry and derivatives (slope, 
bathymetry position index and roughness), temperature, dissolved oxygen, salinity, currents, 
nitrogen, phosphate and silicate. Primary productivity at surface was also collated. 



Table 1. SIOFA VME indicator taxa 

VME indicator taxa 
Cnidaria Gorgonacea (Order) 
 Anthoathecatae (Order) 
 Stylasteridae (Family) 
 Scleractinia (Order) 
 Antipatharia (Order) 
 Zoantharia (Order) 
 Actiniaria (Order) 
 Alcyonacea (Order) 
  Pennatulacea (Order) 
Porifera Hexactinellida (Class) 
  Demospongiae (Class) 
Ascidiacea (Class) 
Bryozoa (Phylum) 
Brachiopoda (Phylum) 
Pterobranchia 
Serpulidae (Family) 
Xenophyophora (Phylum) 
Bathylasmatidae (Family) 
Stalked crinoids (Class) 
Euryalida (Order) 
Cidaroida (Order) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. List of environmental variables collated for the prediction of VME indicator taxa. 

Environmental variables Unit Resolution Source 
Maximum, Minimum 
temperature at seafloor 

Degree 
Celsius 

5 arcmin (0.083 
degree; 

ca. 9.2 km) 
Bio-Oracle 

Maximum, Minimum salinity 
at seafloor pss 
Maximum, Minimum 
dissolved oxygen at seafloor  mol.m-3 
Maximum, Minimum nitrate 
at seafloor  mol.m-3 
Maximum, Minimum 
phosphate at seafloor  mol.m-3 
Maximum, Minimum silicate 
at seafloor  mol.m-3 
Maximum, Minimum primary 
productivity at surface 

 g.m-3.day-
1 

Maximum, Minimum 
currents speed at seafloor m-1 
Particle Organic Carbon 
(POC) mg.m-3 

2.5 arcmin (0.0417 
degree; ca. 4.6 km) 

GMED Distance to land km 5 arcmin (0.083 
degree; 

ca. 9.2 km) Calcite  mol.m-3 

Depth m 
0.004 degree (ca. 

0.4km) GEBCO 2020 
Total alkalinity  µmol.m-3 

1 degree 
(ca. 111km) NOAA's Ocean Carbon and 

Acidification Data Portal 
Omega Aragonite omegaAR 
Omega Calcite omegaCA 

 

Data analysis 

Indicators of data quality 
Verification procedures were applied for taxonomic consistency, error detection, as well as 
evaluation of records in the environmental space. Specifically, we first checked species names 
against the most updated authority, the World Register of Marine Species (WoRMS 2021), for 
synonyms and fossil records. Secondly, we applied automatic error and outlier detection using 
the function clean-coordinates from the R package CoordinateCleaner version 2.0-18 (Zizka 
et al., 2019). We tested for equal coordinates, coordinates over land using the Natural Earth 
data ocean shapefile version 4.1.0 (www.naturalearthdata.com, accessed November 2020), 
and zero coordinates.  

For duplicates of GBIF and OBIS, we used the catalogue number and geographical coordinates 
to filter out potential duplicates. In addition, records with no original depth recorded or with 
no available depth from GEBCO bathymetry were removed from further analysis. 

The working dataset comprised 77,727 occurrence points after the curation of records. From 
these: 36,506 records were found deeper than 50 m water depth; 28,004 records deeper than 



100 m; 23,661 records below 150 m, and 21,503 deeper than 200 m. We used the 100 m 
water depth threshold to perform exploration analyses of the occurrence data (Table 3). 

 

Table 3. Proportion of records per database below 100 m water depth kept for analysis. 

Database Number of records 
GBIF 15,969 (57%) 
OBIS 11,314 (40.4%) 

SIOFA 401 (1.4%) 
NOAA 206 (0.7%) 

Smithsonian Institution 114 (0.4%) 
 

 

 
Figure 1. Distribution of records at depths below 100 m water depth coloured by their source of 
data. 

 

 

 



To investigate the accuracy of the consolidated occurrence dataset, their completeness, and 
uncertainty levels, we produced several maps of distribution of VME indicator taxa 
and  indicators of data quality (Soberón et al., 2007; Leroy et al., 2017). Specifically, we first 
mapped the point-locality distributions of VME indicator taxa and the gridded observed 
richness. Second, in each grid cell, we estimated the theoretical total species richness with 
three non parametric incidence-based richness estimators: ICE (Gotelli & Colwell, 2011), 
Chao2 and Jackknife (Chiu et al., 2014). These methods project the estimated total number 
of species on the basis of the observed number of species in the sample plus a correction 
based on the number of rare species (typically, singletons or doubletons), to account for the 
unobserved fraction of rare species. We chose non-parametric richness estimators because 
they have been proven to perform better than other richness estimators (Walther & Moore, 
2005). Third, we produced maps of estimated sampling completeness by dividing the 
observed species richness in each cell by the estimated total richness. Because species 
richness estimators can be biased when the sampling intensity and observed richness are low, 
resulting in overestimations of data completeness (Leroy, 2012), we defined a richness 
threshold of 30 below which the completeness was set to zero. We produced these different 
maps at the 1 x 1 degree spatial resolution, and other resolutions are currently being 
investigated in order to determine an optimal spatial scale for analysis. . Finally, we explored 
the environmental gradients of the records for the selected environmental variables. 

 

Species Distribution Modelling 
We will model the potential distribution of indicator taxa for which we have enough 
occurrence records (at least 30 spatially independent records). We will undertake an 
ensemble modelling procedure which consists in producing multiple realizations of 
predictions (combining different state-of-the-art model classes with multiple sets of initial 
conditions, parameterizations), from which a consensus can be derived (e.g., average trend), 
and uncertainties quantified (Araújo & New, 2007). Ensemble modelling allows to account for 
spatially explicit uncertainties in maps by applying methods from information gap decision 
theory to fully inform management decisions. The nature of data is “presence-only”, i.e. with 
no reliable information on taxa absence; therefore, we will adapt our data preparation 
(selection of pseudoabsences), modelling protocols and model evaluation techniques 
accordingly (Guillera-Arroita et al., 2015; Leroy et al., 2018; Schickele et al., 2020). 

Because we have no a priori assumption on the shapes of species responses to environmental 
variables, we will apply several classes of modelling techniques available in the biomod2 R 
package (Thuiller et al., 2009): (1) generalized linear models (McCullagh, 1984); (2) 
generalized additive models (Hastie & Tibshirani, 2004); (3) multivariate adaptive regression 
splines (Friedman, 1991); (4) artificial neural networks (Ripley, 2007); (5) random forests 
(Breiman, 2001); (6) boosted regression trees (generalized boosted models, Elith et al. 2008); 
(7) flexible discrimnant analysis (Hastie, Tibshirani, & Buja, 1994). We will investigate different 
methods to account for sampling bias, such as geographical filtering and environmental 
filtering methods (as described in Louppe et al., 2019, Schickele et al., 2020). To summarize, 
these methods aim at reducing sampling bias by reducing the weight of over-sampled areas 
and adapting the pseudoabsence sampling procedure. To adequately assess the performance 
of our models, we will implement a block cross-validation procedure (Roberts et al., 2017) 
which will minimize the degree of autocorrelation between the calibration and evaluation 



datasets. The number of folds for the evaluation procedure will be adapted to the quantity 
and spatial distribution of data for each taxon, with a minimum of two folds. We will evaluate 
our models with two methods: (1) the Boyce index designed for presence only data (Boyce et 
al., 2002) and (2) with a critical, expert-based assessment of response curves (e.g., Schickele 
et al., 2020). On the basis of the selected models, we will produce two ensemble modelling 
maps: the average environmental suitability map, and an uncertainty map based on the 
standard deviation of environmental suitability.  

For the purposes of this paper, we provided a case study on the Order Alcyonacea (Cnidaria: 
Anthozoa: Octocorallia) to demonstrate the above. 

 

Results and discussion 
Data distribution and quality 
Most of the available records were obtained from the publicly available repositories GBIF and 
OBIS, where we could find information for most taxonomic resolutions. Records collated from 
NOAA and Smithsonian also stored information up to species level, whereas records coming 
from the SIOFA Secretariat presented the coarser taxonomic rank, sometimes up to Order 
level.  

Records were mainly distributed around the coastal inshore areas, while large areas of scant 
information dominated the centre of the SIOFA range (Figure 1). The distribution of individual 
VME indicator taxa varied within the study area with groups such as Alcyonacea, Scleractinia, 
Antipatharia and Anthoathecata among the most widely distributed and frequent (Figure 2). 
Indeed, the observed species richness for the compiled records reflected a poor 
understanding of the area (Figure 3) as it did also suggest the sampling intensity (Figure 4). 
This was further confirmed by the estimation of the completeness index (Table 4). The 
completeness index, the ratio between observed richness and estimated richness, indicated 
that only 63% of the species richness of the area is known. This index varied for each of the 
phyla, with Foraminifera, Bryozoa, Brachiopoda and Echinodermanta amongst the best 
sampled and Porifera and Annelida (family Serpulidae) amongst the worst sampled. The 
phylum Cnidaria, which contains the subclasses Hexacorallia, Octocorallia and Hydrozoa, 
presented an index of 64%. However, for all taxa, the spatial distribution of the completeness 
index suggested that the SIOFA area is critically under-sampled (Figure 5). Other grid 
resolutions than 1 degree latitude and longitude are currently explored to define an optimal 
resolution of analysis, which will be a trade-off between spatial resolution and adequate 
completeness.  

The majority of the records occurred above 1,000 m water depth, reflecting the aggregated 
distribution of records in coastal areas (Figure 6). The environmental variables presented 
certain variability at their original resolutions (Figure 6-7). 

 



 
Figure 2. Occurrence records of indicator taxa in the Indian Ocean. 



 
Figure 2. (Continued). Occurrence records of indicator taxa in the Indian Ocean. 

 



Figure 2. (Continued). Occurrence records of indicator taxa in the Indian Ocean. 

 



 
Figure 3. Observed richness per taxonomic level of all occurrence records. 



Figure 
4. Sampling intensity in the study area as the number of sampling events per grid cell at 1 x 1 degree 
spatial resolution.  

 

Table 4. Completeness and species richness of each phylum of the database. Completeness is the ratio 
between observed and estimated species richness (Soberón et al., 2007). For each phylum, the 
completeness is based on three estimators (Chao2, ICE and Jack1) and is averaged across all sites.  

  
Species richness Average estimated richness Completeness index 

Database 1409 2251 0.63 
Cnidaria 634 988 0.64 
Echinodermata 86 115 0.75 
Chordata 144 250 0.58 
Brachiopoda 41 58 0.71 
Bryozoa 238 330 0.72 
Porifera 221 791 0.28 
Annelida 30 88 0.34 
Foraminifera 13 17 0.76 

 
 



Figure 5. Completeness index. The ratio between the estimated richness by three estimators (ICE, 
Jackknife and Chao) and the observed richness. A higher index indicates less sampling bias. 

 



 
Figure 6. Environmental gradients of occurrence records at the native resolution of the environmental 
variables. The variables explored included the maximum (max) and minimum (min) of temperature, 
salinity, dissolved oxygen. ‘BO’ indicates ‘Bio-Oracle dataset’. 



 
Figure 6. Environmental gradients of occurrence records at the native resolution of the environmental 
variables. The variables explored included the maximum (max) and minimum (min) of silicate, 
phosphate, nitrate concentrations. ‘BO’ indicates ‘Bio-Oracle dataset’. 



 
Figure 6. (Continued). Environmental gradients of occurrence records at the native resolution of the 
environmental variables. The variables explored included bathymetry, the maximum max) and 
minimum (min) of currents speed, and primary productivity at surface. ‘BO’ indicates ‘Bio-Oracle 
dataset’. 



 
Figure 7. Environmental variables gathered for this study at their native resolutions. 

 

Explorative predictive modelling 
We tested the methodology to predict habitat suitability of indicator taxa on the Order 
Alcyonacea for which we had at least 30 rasterized observations, i.e. one observation per grid 
cell, for a total of 30 grid cells. We considered only a set of environmental variables as 
predictor variables for the purposes of the example, although a selection procedure based on 
Spearman correlation followed by a hierarchical clustering will be performed. Here we 
included seafloor dissolved oxygen concentration, temperature, salinity, currents speed, 
primary productivity at surface and depth. 

Because the data was presence-only, the same amount of pseudo-absences as presence 
points were randomly generated using the ‘biomod’ R package. The models used in 
calibration were: general linear model (GLM), general additive model (GAM), artificial neural 
network (ANN), generalised multiple boosting models (GBM), flexible discriminant analysis 
(FDA) and random forest (RF). The performance of the models was assessed by cross-
validation with the Boyce and Jaccard indices that are threshold-independent. 

Once the models were calibrated and evaluated, we inspected the response curves to the 
environmental variables. The response curves show how the environmental suitability of the 
taxon responds to every individual calibrated model as well as the average trend for all models 



(Figure 8). In this case, depth and seafloor temperature seemed to have an effect on the 
prediction of the taxon. 

The ensemble model was then generated using the average prediction of all evaluated models 
(Figure 9A). The ensemble model can then be penalised with the standard deviation of the 
prediction of all models, a measure of uncertainty (Figure 9B). In the example, there are areas 
where all models predict habitat suitability with good certainty, such as the ocean ridges and 
continental shelves. However, on the other hand, there is uncertainty at the boundary of 
these suitable areas, and also uncertainty in some other areas of the SIOFA which might be 
suitable according to some models, but not for some other models, hence higher uncertainty. 

Finally, the ensemble model can also be converted to a binary output of presence and absence 
of a taxon by using a threshold to determine the cut-off for a presence or an absence. Binary 
maps in combination of uncertainty measures are particularly useful as decision making tools 
in management scenarios. 

 

Assessment of the implications of data quality and completeness for the 
bioregionalisation procedures 
To briefly summarize the planned bioregionalisation scheme, we will provide three main 
types of bioregionalisation maps. First, we will provide maps of observed bioregions based on 
the observed distribution of VME indicator taxa. Second, we will provide predictive bioregions 
based on the individual modelled distributions of VME indicator taxa. Third, we will provide 
an alternative set of predictive bioregions based on the modelled relationship between 
observed bioregions and the environment. It is important to note the difference between the 
two types of predictive bioregions. The predictive bioregions based on individually modelled 
VME indicator taxa will account for the respective individual requirements (processes) of VME 
indicator taxa, but will omit the taxa for which there are not enough observations. The 
predictive bioregions based on the relationship between observed bioregions and the 
environment will include all VME indicator taxa, but will be based on a coarser process 
distinguishing between the major types of bioregions. 

Overall, our first results evidence the paucity of distribution data available for VME indicator 
taxa in the SIOFA area. This finding has two main implications for the planned 
bioregionalisation scheme. First, the maps of observed bioregions based on observed data 
will likely be limited to a restricted subset of the overall SIOFA area, as illustrated in Figure 5. 
Second, mapping the predictive bioregions over the entire SIOFA area will be strongly based 
on the environmental data gathered here (Figure 7) and the chosen models. Consequently, 
adequate modelling procedures to estimate the environmental requirements of VME 
indicator taxa appear to be critical here and will require a thorough development and 
implementation, with a particular emphasis on evaluation of the uncertainties.  

Given the number of records available for VME indicator taxa, we will explore modelling 
techniques dedicated to cases with small number of observations, such as Ensembles of Small 
Models, which have been reported to be superior to standard models in terms of 
performance and transferability (Breiner et al., 2018). However, regardless of the modelling 
procedure, the distribution of some VME indicator taxa will likely not be modelled because of 



the lack of observations, which confirms our initial expectation that predictive bioregions 
based individually modelled VME taxa map will omit some of the VME indicator taxa. 

This impossibility of accounting for all VME indicator taxa in the predictive bioregions based 
on individually modelled taxa emphasizes the importance of the other predictive approach 
which will model the relationship between bioregions and the environment. Altogether, these 
two approaches will provide complementary pictures of the distribution of bioregions for 
VME indicator taxa in the SIOFA area. Nevertheless, the shortfalls of available distribution 
data for VME indicator taxa suggest that both approaches will have important uncertainties, 
which we will estimate during the modelling procedure. In case the uncertainties are too 
important, we will consider a third type of predictive approach relying more on environmental 
data than the aforementioned ones. This third type of approach consists in simultaneously 
analysing biological data and environmental data in the process of generating bioregions (Hill 
et al., 2020), and constitutes a promising alternative in such data-poor contexts.  

 
 
 
 
 



 
Figure 8. Response curves for all calibrated models. The graphs show the predicted probability of 
presence of the indicator taxa for each of the environmental variables selected. The thick blue line 
represents the average of all models. The response curve is the dependence of the probability of the 
presence on one predictor variable after averaging out the effects of the other predictor variables in 
the model. 



 
Figure 9. Ensemble models for the probability of presence of Alcyonacea. A. Continuous ensemble 
model. Higher suitability is represented by red colors. B. Standard deviation of the continuous model 
(A), with higher uncertainty in red colors. 
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