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Abstract 
This document is a short extraction from the article “Benthic ecoregionalisation and 

conservation issues in the French Exclusive Economic Zone of Kerguelen” submitted the 

16/05/2018 to the journal CCAMLR Science. Original article includes full benthic 

ecoregionalisation modelling results. In this document, a methodological focus is made to 

highlight the relevance of using the CCAMLR’s Vulnerable Marine Ecosystems bioindicator 

taxa to build benthic ecoregionalisation models, which constitutes a secondary result of the 

original study. 
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Abstract 

 

This document is a short extraction from the article “Benthic ecoregionalisation and conservation issues 

in the French Exclusive Economic Zone of Kerguelen” submitted the 16/05/2018 to the journal 

CCAMLR Science for the proceedings of The Second Symposium on Kerguelen Plateau Marine 

Ecosystems and Fisheries (13–15 November 2017, Hobart, Tasmania). The document, in revision, has 

been accepted with minor corrections. Full text, figures, results, discussion and references will be 

available in the original article. Original article includes full benthic ecoregionalisation modelling 

results and an assessment of the new marine reserve of the Kerguelen EEZ regarding to the benthic 

conservation issues. In this document, a methodological focus is made to highlight the relevance of 

using the CCAMLR’s Vulnerable Marine Ecosystems bioindicator taxa to build benthic 

ecoregionalisation models, which constitutes a secondary result of the original study.  



1. Introduction 

 

(…) Understanding deep-sea ecosystems structure represents a major scientific issue for conservation 

and sustainable exploitation of commercial species in the French EEZ [of Kerguelen]. In addition to 

global change (Smith et al., 2006), benthic ecosystems in the French EEZ of Kerguelen are impacted 

by an industrial deep-sea longline fishing activity, focusing today on Patagonian toothfish Dissostichus 

elegenoides (Duhamel et al., 2011). 

 

To prevent potential impacts of longline fishing and following the evolution of international regulation, 

the “Terres Australes et Antarctiques Françaises” (TAAF) administration transposed in 2014 CCAMLR 

Conservation Measures 22/06 and 22/07 about Vulnerable Marine Ecosystems (VME) conservation 

(TAAF, 2008) in the French EEZ of Kerguelen (TAAF, 2014). Furthermore, the Muséum national 

d’Histoire naturelle (MNHN) started to develop in 2015 a permanent VME monitoring program to 

assess the real impact of the fishery on deep-sea benthic habitats (Martin et al., 2017). 

 

Moreover, the Marine Reserve of Kerguelen, managed by TAAF administration and originally limited 

to some coastal areas, has been recently extended to a large portion of deep-sea environments in the 

French EEZ in 2016 and 2017 (TAAF, 2017). (…) 

 

Here we (…) identify sub-regions characterized by homogeneous benthic assemblages using a 

measurable and repeatable methodology (…) [and highlight the relevance of using the CCAMLR’s 

Vulnerable Marine Ecosystems bioindicator taxa to build benthic ecoregionalisation models].  



2. Materials and methods 

 

Approach and choice of the method 

 

Ecoregionalisation method is used in this work as a “process and output of identifying and mapping 

broad spatial patterns based on physical and biological attributes through classification methods used 

for planning and management purposes” (Reygondeau et al., 2014). The choice of this approach aims 

to meet the first main objective of this study, to characterise ecological sub-regions based on 

homogeneous benthic assemblages and to contribute to our understanding of deep-sea benthic ecology 

of the study area. Various ecoregionalisation methods have been developed and are commonly used in 

ecosystem-based spatial management studies (e.g. Berline et al., 2014 ; Blasi et al., 2015, Duranton, 

2006; Hill et al., 2018; Hornsmann et al., 2008; Hunter et al., 2018; O’Hara, 2008). Given its relevance 

to our objectives the Generalized Dissimilarity Modeling (GDM) technique has been selected for 

analysis (Ferrier et al., 2007). GDM is a “statistical technique for modeling spatial variation in 

biodiversity between pairs of geographical locations. It allows to make predictions and map biological 

patterns by transforming environmental predictor variables” (Ferrier et al., 2007). To perform the GDM 

and produce interpretable results in terms of benthic assemblages, a complete analysis pipeline has been 

developed, using R software (R Core Team, 2015) and includes different steps, from dataset assembly 

to statistical analyses. The choice of this robust and proven modeling technique (e.g. Ives and Helmus, 

2011; Koubbi et al., 2010; Leathwick et al., 2010; Leitao et al., 2015), associated to the development of 

a pipeline, aim to process a complete analysis using a measurable and repeatable methodology allowing 

inter-comparison between models. 

 

Biological data 

 

POKER (POissons de KERguelen) is a program led by the MNHN, Paris, and has been designed to 

monitor commercial and by-catch fish species within the French EEZ of Kerguelen (Duhamel et al., 



2011). This monitoring program is based on systematic random stratified trawl surveys over the 

northern part of the Plateau, from 85 to 1,000 m depth. POKER II cruise (October 2010) included a 

marine invertebrate by-catch sampling program (Duhamel et al., 2011). The 40 mm mesh   bottom trawl 

used during POKER was designed for catching demersal fish, and benthic invertebrates collected as by-

catch were limited to macro-epibenthic invertebrate. All organisms collected have been sorted, 

weighted, identified, and photographed (Eléaume et al., 2011). Furthermore, representative sub-samples 

of specimens have been collected and fixed in 96% ethanol to be later identified using molecular and 

anatomical approaches (Eléaume et al., 2011). A set of presence/absence data for 111 taxa and 

morphotypes identified at various taxonomic levels (fig. 1) has been produced for the 209 stations of 

the survey (fig. 2). 

 

 

Fig.1: taxonomic identification levels given in percentage for the 111 taxa of  the POKER II 

invertebrates dataset; 1: species or morphotype; 2: genus; 3: family; 4: order; 5: class; 6: phylum  
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Fig.2: geographical distribution of POKER II cruise sampling stations over the French Exclusive 

Economic Zone of Kerguelen 

 

Four types of grouping have been used to pool observations together and produce ecoregionalisation 

models: life history traits (trophic mode and motility), protection status and taxonomic identification. 

Scientific literature (Gutt, 2007; Shojaei, 2016) and taxa listed by CCAMLR as VME bio-indicators 

(mostly engineer taxa and/or sessile and/or suspension feeders) (CCAMLR, 2008) have been used to 

define relevant groups and classify all the observations in specific tables. 

 

Environmental data 

 

Fifteen environmental variables representing seafloor and sea surface conditions have been extracted 

or derived (Guillaumot et al., 2016) from available international databases (Boyer et al., 2013; Douglass 

et al., 2013; Mccoy, 1991; Smith and Sandwell, 1997), and processed so as to fit species postulated life 

span, species observed bathymetric distribution and POKER II spatial coverage  (Duhamel et al., 2011) 

(tab. 1). Environmental statistics were averaged over the 2005-2012 period  and encompass depths 

ranging from 85 to 1000 m with spatial extension from 46° to 52° South and 63° to 73° East. Spatial 



resolution was set to a common 0.1°. Poker II transects mid-points were used to assign environmental 

statistics to biological occurrences. 

 

Prior to modeling, explanatory factors have been selected using the Spearman correlation test with a 

threshold of rs <= 0,66 (Mukaka, 2012). Whenever two variables displayed rs > 0.66, a rule of thumb 

was applied and variables considered to have the highest explanatory power were retained.  



Table 1: environmental factors used for the ecoregionalisation modelling with references 

Environmental predictors References 

Depth 
Guillaumot et al. (2016), derived from Smith and 

Sandwell (1997) 

Average of surface 

temperature 
World Ocean Circulation Experiment (2013) 

Variance of surface 

temperature 
World Ocean Circulation Experiment (2013) 

Average of temperature near 

seafloor 

Guillaumot et al. (2016), derived from World Ocean 

Circulation Experiment (2013) sea surface temperature 

layers 

Variance of temperature near 

seafloor 

Guillaumot et al. (2016), derived from World Ocean 

Circulation Experiment (2013) sea surface temperature 

layers 

Average of surface salinity World Ocean Circulation Experiment (2013) 

Variance of surface salinity World Ocean Circulation Experiment (2013) 

Average of salinity near 

seafloor 

Guillaumot et al. (2016), derived from World Ocean 

Circulation Experiment 2013 sea surface salinity layers 

Variance of salinity near 

seafloor 

Guillaumot et al. (2016), derived from World Ocean 

Circulation Experiment 2013 sea surface salinity layers 

Average of chlorophyll 

concentration in summer 
MODIS AQUA (NASA) (2010) 

Geomorphology ATLAS ETOPO2 2014 (Douglass et al. 2014) 

Sediments McCoy (1991), updated by Griffiths 2014 (unpublished). 

Seafloor slope Smith and Sandwell (1997) 

Average of oxygen 

concentration near seafloor 

Guillaumot et al. (2016), derived from World Ocean 

Circulation 

Experiment 2013 sea surface oxygen concentration layers 

Ruggedness Guillaumot et al.(2016), derived from bathymetric layer 

 



Statistical analyses 

 

GDM technique is based on analysis of biological dissimilarity between sampling stations according to 

the variation of related environmental factors (Ferrier et al., 2007). 

 

GDM technique takes into account biological and environmental datasets and produces a dissimilarity 

matrix that best reflects biological/environment interactions. Each presence/absence biological table is 

transformed into a dissimilarity matrix using Jaccard Index (Goslee et al., 2007). This biological 

dissimilarity matrix is compared to environmental layers and a new table is produced that includes for 

all possible pairs of sampling stations biological distance and environmental statistics. A Generalized 

Linear Model (GLM) (McCullagh and Nelder, 1989) is fitted to this table, with the biological 

dissimilarity as the explained value and the environmental statistics as the explanatory factors. An 

iterative modeling process is run to select the best GLM and the best set of environmental factors, using 

the deviance explained as testing criteria (McCullagh and Nelder, 1989). 

 

To predict biological dissimilarity over the whole study area, models are secondarily applied to the 

main environmental grid. Each ecoregionalisation model results in a new distance matrix where the 

biological distance index between all the pairs of pixels of the main grid is calculated from the GLM. 

Predictions are limited to the cells of the main grid that present environmental conditions similar to 

those observed at the sampling stations. In addition, data gaps are not compensated by interpolation 

techniques, to allow a critical evaluation of the quality of the modelling outputs. 

 

Modeled predictions are then clustered using Partitioning Around Medoids (PAM), an algorithm that 

accommodates very large matrices (Kaufman and Rousseeuw, 1987). Each clustering is iterated ten 

times, starting with three a priori clusters, and finishing the process at twelve clusters. Number of 

clusters that maximizes “Sih” Silouhette Index (Rousseeuw, 1987) is selected. 

 



For each ecoregionalisation model, ecological sub-regions or ecotypes are characterised. Ecotypes are 

here defined as spatially delimited areas with shared similar environmental factors and benthic 

assemblages. For this study, the spatially delimited areas are the areas obtained from the clustering of 

model predictions. Environmental envelope of each ecotype is summarized using environmental 

statistics of pixels attributed to each cluster. Benthic assemblages of ecotypes are the taxa detected in 

sampling stations located within the spatially delimited areas. 

 

To characterize species assemblages in a given spatial area, many techniques are commonly used (e.g. 

Johnson et al., 1993; Kremen, 1992; Pardo and Armitage, 1997; Ward et al. 1999; Wright and Reeves, 

1992). For this study, IndVal index is used (Dufrêne and Legendre, 1997). Indval attributes a value to 

each taxon or group of taxa in a given area. This value is the product of a specificity component defined 

as “the probability that the surveyed site belongs to the target site group given the fact that the species 

has been found”, and a sensitivity component defined as “the probability of finding the species in sites 

belonging to the site group” (italics are quoted from Dufrêne and Legendre, 1997). The higher the value 

of IndVal index attributed to a taxon or a combination of taxa, the higher its value as a bioindicator. 

IndVal statistical significance is also tested and a p-value is provided (Dufrêne and Legendre, 1997). 

For this study, we performed IndVal analysis by testing bioindicator value for all taxa that were detected 

in the various ecotypes of each ecoregionalisation model. We also performed the analysis by testing 

bioindicator value for all combinations of two and three of those taxa. 

 

Ecotypes are projected onto a map using QGIS (QUANTUM GIS Development Team, 2012) and 

surface overlap with Marine Reserve Strictly Protected Areas (MRSPA) is computed. Percentage of 

each ecotype located within MRSPAs is here interpreted as a measurement of the protection level of 

each ecotype. This level of protection is contextualized according to the degree of rarity of each ecotype 

calculated as the percentage of each ecotype in the whole study area. These results are used in a 

preliminary evaluation of the relevance of the protection zones for the conservation of deep-sea benthic 

assemblages. 

 



3. Results 

 

Six out of fifteen uncorrelated environmental factors are retained for modeling: depth, surface 

temperature mean, sea surface salinity amplitude, chlorophyll a summer mean, slope and sediments. 

 

Twenty-one distinct benthic ecoregionalisation models are produced and projected onto a map also 

showing MRSPAs localisation. Pixel size indicates the geographical scale of predictions and blank areas 

indicate missing, uninterpolated data. 

 

Thirteen models have been computed using taxa at various identification levels: Actiniaria (fig. 3a), 

Annelida (fig. 3b), Arthropoda (fig. 3c), Ascidiacea (fig. 3d), Asteroidea (fig. 3e), Cnidaria (fig. 3f), 

Corals (fig. 3g), Echinodermata (fig. h3), Echinoidea (fig. 4a), Holothuroidea (fig. 4b), Mollusca (fig. 

4c), Ophiuroidea (fig. 4d) and Porifera (fig. 4e). A complete benthic ecoregionalisation model has also 

been computed by pooling together all 111 taxa occurrence data (fig. 4f). Six models have been 

computed using life history traits: motility includes Vagile (fig. 4g) and Mobile (fig. 4h); organisms 

feeding mode includes Detritivore (fig.5a), Necrophagous (fig.5b), Predator (fig.5c) and Suspension 

feeders (fig.5d). A single model was obtained using CCAMLR Vulnerable Marine Ecosystems (VME) 

taxa (fig. 5e). 

(…)  



All taxa (f) 

Fig. 4: benthic ecoregionalisation projected into maps showing ecotypes geographical distribution for 

Echinoidea (a), Holothuroidea (b), Mollusca (c), Ophiuroidea (d), Porifera (e), all taxa (f), vagile organisms 

(g) and mobile organisms (h), Marine Reserve (MR) and Strictly Protected Areas (SPA) 
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CCAMLR Vulnerable Marine Ecosystems (e) 

Fig. 5: benthic ecoregionalisation projected into maps showing ecotypes geographical distribution for 

detritivore organisms (a), necrophagous organisms (b), predator organisms (c), suspension feeders (d) 

and CCAMLR Vulnerable Marine Ecosystems indicators (e), Marine Reserve (MR) and Strictly Protected 

Areas (SPA) 



Table 2: quality indices for each ecoregionalisation model: number of ecotypes, number of taxa 

supporting the modeling process, Sih index of the clustering, number of IndVal bioindicators and 

number of ecotypes including IndVal  bioindicators for each output. 

Group 
ecoregionalisation 

model 

number of 

ecotypes 

number of 

taxa 
Sih index 

number of 

IndVal 

bioindicators 

number of 

clusters 

including 

bioindicators 

Taxa 

Actiniaria 4 7 0.7 0 0 

Annelida 3 2 0.84 2 2 

Arthropoda 3 10 0.73 4 3 

Ascidiacea 3 3 0.93 2 1 

Asteroidea 4 30 0.75 88 3 

Cnidaria 3 12 0.73 9 2 

Corals 5 5 0.87 0 0 

Echinodermata 4 35 0.69 143 4 

Echinoidea 3 4 0.69 2 2 

Holothuroidea 3 10 0.78 14 2 

Mollusca 3 10 0.88 0 0 

Ophiuroidea 4 8 0.68 0 0 

Porifera 4 3 0.87 2 1 

Feeding mode 

Detritivore 3 18 0.85 24 2 

Necrophagous 5 10 0.67 10 3 

Predator 6 37 0.73 275 6 

Suspension feeder 3 21 0.93 4 1 

Motility 
Sessile 5 26 0.7 45 3 

Vagile 8 52 0.7 41 3 

Prot. status CCAMLR VME 8 23 0.77 64 4 

Complete All Taxa 4 111 0.69 1179 4 

 

 

Across all ecoregionalisation models number of ecotypes varies from 3 to 8 with a mode at 4 (tab. 2). 

For the taxa-based ecoregionalisation models, the number of ecotypes varies from 3 to 5, with a mode 

at 3 and a mean of 3.53. For the life-traits-based models, the number of ecotypes varies from 3 to 8, 

with a mode at 3 and a mean of 4.6. Maximum number of ecotypes is found when models are run using 

Vagile or CCAMLR VME groups. 

 

Number of ecotypes across models is not related to the number of taxa used to fit the models. For 

example CCAMLR VME ecoregionalisation results in 8 ecotypes and is supported by 23 taxa (tab. 2). 



In contrast, Asteroidea ecoregionalisation results in 4 ecotypes, supported by 30 taxa, and the complete 

ecoregionalisation, supported by 111 taxa, results in 4 ecotypes.  

 

Number of taxa used in models varies from 2 for Annelida to 111 for Complete (tab. 2). Taxa-based 

models include from 2 (Annelida) to 35 (Echinodermata) taxa, and life history traits-based models 

include 10 (Necrophagous) to 52 (Vagile) taxa. The mean is 20.57 taxa across all models. 

 

Sih index associated to each clustering varies from 0.67 (Necrophagous) to 0.93 (Ascidiacea and 

Suspension feeders), with a mean at 0.77 across all groupings (tab. 2). 

 

For taxa-based models, the number of IndVal  bioindicators varies from 0 to 143 combinations of taxa 

(tab. 2). The highest value is obtained for Echinodermata model. For life history traits-based models, 

the number of IndVal bioindicators varies from 24 combinations of taxa for the Detritivore 

ecoregionalisation to 275 for Predator. Model derived from Complete dataset includes an extreme value 

of 1179 combinations of taxa as IndVal  bioindicators. 

 

Number of IndVal bioindicators for each model and the number of ecotypes including IndVal 

bioindicators are not related to 1- number of taxa supporting the modelling process or 2- number of 

resulting ecotypes. For example, only 4 IndVal bioindicators could be computed in a unique ecotype 

for the suspension feeder ecoregionalisation, with 21 taxa used for the GDM and 3 ecotypes which 

could be characterized (tab. 2). This can be compared to the necrophagous ecoregionalisation, built with 

only 10 taxa, but including 10 combinations of taxa as IndVal bioindicators for 3 ecotypes of the model. 

 

The number of clusters including IndVal bioindicators within each ecoregionalisation model varies from 

0 to all the clusters of the output (tab. 2). For example, Predator model allowed to compute IndVal 

bioindicators for all the 6 ecotypes. 

 



Finally, the most parcimonious and informative benthic ecoregionalisation model is obtained using 

CCAMLR VME grouping. This model uses 23 taxa and displays 8 ecotypes, with a Sih index of 0.77 

equivalent to the mean obtained for the whole set of outputs (tab. 2). This model is retained for further 

analyses of the effect of environmental factors on biological dissimilarity, and to evaluate the relevance 

of the protection zones of the new Marine Reserve. 

 

Projection onto a map of VME ecoregionalisation (fig. 5e) shows an homogeneous geographical 

distribution for each of the 8 benthic assemblages: no strong fragmentation can be observed, most of 

the pixels appearing to be located in continuous areas of pixels with same computed ecotype. This 

strong spatial structuration can be observed both on the plateau and the south-western “Skiff Bank” 

seamount. 

(…) 

 

4. Discussion 

 

Quality of the models 

 

Assessing the minimum number of biological records required to compute ecological models constitutes 

a major methodological issue, especially for data-poor areas such as freshwater and marine habitats 

(e.g. Bevilacqua et al., 2009; Fraschetti et al. 2011; Guillaumot et al. 2017; Ramos-Merchante and 

Prenda, 2017; Terlizzi et al., 2009; van Proosdij et al., 2016). Our study constitutes a contribution to 

solve this issue using an ecoregionalisation approach. 

 

The quality indices for each ecoregionalisation model show that 1- number of ecotypes is independent 

from the number of taxa included in a given model and that 2- number of IndVal bioindicators and 

number of ecotypes including IndVal bioindicators are independent from both the number of sampled 

taxa and the number of ecotypes resulting from the modeling process. 

 



In the light of this analysis, the biological indicator value of the benthic assemblages appears to be more 

efficient for ecoregionalisation and ecotypes characterization than the number and the diversity of 

sampled taxa. Indeed, increasing the quantity of biological observations by pooling together specialist 

and ubiquitous species, can result in a decrease of model statistical power. This is exemplified here by 

the highly informative VME model. 

(…) 

 

5. Conclusion 

 

Our results show that increasing the number of taxa in models may have adverse consequences and may 

decrease the quality of analyses. Analyzing datasets restricted to relevant groupings results in more 

informative ecoregionalisation models. Here we show that VME-based ecoregionalisation 

unexpectedly appears more informative than the model based on the complete dataset. This finding is 

of particular interest because VME organisms are regularly collected by longliners and can constitute a 

source of relevant data for modeling benthic ecosystems at a larger scale including CCAMLR areas.  

(…) 

 

 

 

 

 

 

 

 

 


